

Journal of Korean Society for Atmospheric Environment Vol. 39, No. 6, December 2023, pp. 1050-1061 https://doi.org/10.5572/KOSAE.2023.39.6.1050 p-ISSN 1598-7132, e-ISSN 2383-5346

논 문

전라북도 논밭지역 계절별 암모니아 농도 및 암모늄과의 관계 Seasonal Measurement of Ammonia Concentration and its Relationship with Ammonium in the Field Areas of Jeollabuk-do

김민욱⁺, 유근혜^{1),+}, 김진호, 송명기¹⁾, 오세호¹⁾, 최서영¹⁾, 전하정¹⁾, 고동훈¹⁾, 배민석^{1),*}

국립농업과학원 농업환경부 기후변화평가과, 1)국립목포대학교 환경공학과

Minwook Kim[†], Geun-Hye Yu^{1),†}, Jin-Ho Kim, Myoungki Song¹⁾, Sea-Ho Oh¹⁾, Seoyeong Choe¹⁾, Hajeong Jeon¹⁾, Dong-Hoon Ko¹⁾, Min-Suk Bae^{1),*}

Climate Change Assessment Division, National Institute of Agricultural Sciences, Wanju, Republic of Korea

¹⁾Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea

접수일 2023년 11월 14일	
수정일 2023년 11월 22일	
채택일 2023년 11월 24일	

Received 14 November 2023 Revised 22 November 2023 Accepted 24 November 2023

[†]These two authors contributed equally to this work as co-first authors.

*Corresponding author Tel : +82-(0)61-450-2485 E-mail : minsbae@mnu.ac.kr

Abstract This study investigated the relationships between secondary inorganic aerosols in $PM_{2.5}$ and precursor gases emitted from active agricultural areas over a period of one year, from June 1, 2022, to May 31, 2023, in Rice (Buan) and Fields (Gochang) in the Jeollabukdo Region simultaneously. In addition, the study examined the particle-phase conversion rates of gaseous precursor compounds to elucidate factors influencing the chemical characteristics of $PM_{2.5}$. The high NH₃ concentration in the early morning, assuming constant soil emission, suggested a significant influence from surrounding environmental conditions. In Buan and Gochang, NO_3^- predominantly existed in particle form during cold winter temperatures, while in hot summer temperatures, it mainly existed in the gas phase, demonstrating distinct seasonal behavior. Furthermore, NO_3^- was influenced by localized generation due to regional primary emissions. The study results indicate that the formation of NO_3^- in Buan and Gochang is primarily governed by NH_4^+ originating from regional soil-emitted NH₃. These findings can serve as crucial foundational data for elucidating the seasonal concentrations of precursor gases, including NH₃, emitted to agricultural regions.

Key words: NH₃, NOR, NHR, Secondary formation

1. 배 경

농업 활동에 의한 대기 중 입자상 물질의 원인으로 토지 경작, 비료 살포, 작물 수확, 농업 부산물 소각 등 이 있다(Bogman *et al.*, 2005; Cassel *et al.*, 2003; Hinz *et al.*, 2002). 이러한 농업 활동에서 배출되는 슬러리 및 살충제 살포, 비포장도로 비산먼지, 농기계에 의한 연료 연소에서 발생되는 오염물질이 1차 미세먼지를 생성하며(Aneja *et al.*, 2009), 특히, 농업지역 미세먼 지 농도는 측정지역의 농업 토양특성에 따른 비산먼 지의 재비산율, 재배 작물에 따른 비료 사용량과 농약 의 종류 등에 의해 결정된다. 이와 더불어 농경지의 농기계 사용 기간 동안 토양 입자가 분해되어 공기 중 에 부유하며, 탈곡 및 수확과 더불어 기상요인에 의해 대기로 확산된다(Chen *et al.*, 2017; Kasumba *et al.*, 2011; Wang *et al.*, 2010; Holmén *et al.*, 2008; Goossens and Riksen, 2004; Hinz *et al.*, 2002).

농업지역의 풍속과 같은 기상 조건은 오염물질의 대기 확산을 방해하여 1차 오염물질 증가와 2차 오염 물질 생성과 직접적인 연관성이 있다. 기체상 전구물 질은 높은 상대습도에서 불균일 반응이 활발하게 일 어나 2차 오염물질 생성을 촉진시킨다. 암모니아 (NH₃)와 같은 가스상 전구물질의 균일 또는 불균일 반응으로부터 형성되는 2차 미세먼지는 PM_{2.5} 농도를 더욱 가중하게 된다(Pattey and Qiu, 2010). 특히, 저풍 속과 높은 상대습도의 안정한 대기조건이 1차 오염물 질의 축적과 2차 오염물질들의 생성을 가속화시킨다 (Ma *et al.*, 2017; Saxena *et al.*, 2017; Zhang *et al.*, 2016; Zheng *et al.*, 2015; Sun *et al.*, 2013).

농업지역의 대기 중 PM₂₅ 농도는 NH₄⁺, NO₃⁻, SO₄²⁻를 포함한 2차 무기염 입자의 영향이 지배적이 다(Walker et al., 2006). NO3⁻ 전구물질인 HNO3는 질 소 산화물이 OH 라디칼과 반응하거나 야간에 O₃에 의한 산화와 이질 반응에 의해 생성되며(Jiang and Xia, 2017), HNO₃는 NH₃와 반응하여 NH₄NO₃를 거 쳐 NO3 로 전환된다. 산성 전구물질인 NOx (NO+ NO2)와 SO2는 알칼리성 가스상 성분 NH3와 기온, 습 도에 따라 열역학적 평형을 이루며 2차 무기염 입자 로 전환된다(Ianniello et al., 2011). 따라서 NH3는 2차 무기염 입자의 상분배와 대기오염 제어에 있어 핵심 역할을 수행한다. 2차 무기염 입자와 가스상 전구물 질은 응축 및 휘발을 포함한 비선형적 반응을 통해 대 기화학 조성을 변화시킨다. 이에 대기 중의 2차 무기 염 입자 생성 과정을 파악하면 입자상 물질과 가스상 물질 이외에도 대기 중 존재하는 미세먼지의 표면특 성까지도 이해할 수 있다.

국내 배출 부문별 PM_{2.5} 농도 영향과 관련된 선행 연구는 주로 수도권, 충남과 같이 대기오염물질의 배 출이 많고, PM_{2.5} 농도가 상대적으로 높은 지역을 중 심으로 수행되어 왔다. 특히, 농업지역을 중심으로 한 NOx, SO₂ 및 PM_{2.5} 구성성분과의 관련성을 살펴본 연 구는 거의 없다. 가스상 전구물질이 입자상으로의 전 환은 기상과 대기화학 조건에 의해 계절변화를 보인 다. 계절적으로는 여름철 PM_{2.5}의 오염 현상은 SO₂와 휘발성 유기화합물의 활발한 광화학 반응을 통하여 각각 SO₄²⁻와 2차 유기 에어로졸의 생성에 기인하며 (Li *et al.*, 2017; Chen *et al.*, 2003), 겨울철에는 탄소 성 분과 NO₃⁻의 농도 증가에 기인한다. 이와 같이 PM_{2.5} 의 화학적 특성은 지역, 배출원, 계절, 기상 등에 따라 달라진다. 그러므로 한 지역에서 PM_{2.5}의 고농도 현상 으로부터 야기되는 대기질 문제를 효과적으로 관리하 기 위해서는 지역별 PM_{2.5}의 화학적 특성의 차이를 조사하고 이에 대한 원인을 살펴볼 필요가 있다.

1051

본 연구는 전북 고창과 부안에 위치한 농업지역에서 1년 이상 관측한 풍향, 풍속 등 기상요인, NH₃, NOx, SO₂, PM_{2.5} 질량 농도 및 NH₄⁺, NO₃⁻, SO₄²⁻를 포함한 2차 무기성분을 분석하여 가스상으로부터 계절별 nitrate oxidation ratio (NOR) 및 ammonium conversion ratio (NHR)을 산출하였다. 본 연구 결과는 농업 지역에 배출되는 계절별 전구가스성분에 대한 PM_{2.5} 질량 농도에 대한 생성 규명에 중요한 기초자료로 활 용될 수 있다.

2. 실험 방법

2.1 측정장소

본 연구에서는 농업지역 초미세먼지 성분 분석을 통한 2차 생성 전구물질의 생성기작의 기초자료를 분 석하고자 논지역(전북 부안군 계화면 간재로 692, 식 량원 계화도 시험지) 및 밭지역(전북 고창군 대산면 칠거리로 70, 고창기상대표기상관측소)에서 2022년 6 월 1일부터 2023년 5월 31일까지 총 1년 4계절 동안 동시에 측정하였다(그림 1). 국가통계포털(http:// kosis.kr)에 의하면 부안군의 농경지는 논과 밭 면적 이 각각 76%, 24%로 논의 비중이 높다. 고창군의 약 51%에 해당하는 중앙부는 고도 100 m 이하의 낮고 넓은 구릉지로 형성되어 있어 대부분 농경지로 이용 되고 있다. 또한 고창군은 주로 밭농사와 밭을 이용한 특용 작물의 재배가 발달하였다. 연구기간 동안 전구 물질 가스상 성분 및 분진 포집을 위해 부안과 고창측 정지점에 컨테이너형 측정소를 2개씩 (총 4개소) 설치 하여 운영하였다.

Fig. 1. (a) Measurement locations in rice (Buan) field (Gochang) areas of Jeollabuk-do and (b) Home-made 12 channel PM sequence sampler.

2.2 전구가스상 성분 실시간 측정 및 입자상 성분 분석

농업지역에서 발생하는 PM25 농도와의 관련성을 분 석하고자 베타레이 방식의 PM10 & PM2.5 (Spirant BAM 1020, Met One Instruments Inc., USA) 실시간 질량 측정, 가스상 성분 NH₃ (cavity ring-down spectroscopy, CRDS G2013), NO & NO₂ (Serinus[®] 40, Ecotech ACOEM Group, Australia), SO₂ (Serinus[®] 50, Ecotech ACOEM Group, Australia), O₃ (Serinus[®] 10, Ecotech ACOEM Group, Australia)을 실시간 측정하였다. 베타 레이 방식 PM10 & PM25의 경우 측정 시작 전 등가성 및 정도검사를 한국산업기술시험원을 통해 진행하였 으며, 가스상 측정기의 경우 매월 1회씩 각 측정소에 서 표준가스를 이용한 교정을 진행하였다. 베타레이 PM10 & PM25는 1시간 자료를 산출하며, 가스상 측정 기의 경우 5분 자료를 산출하여, 검교정 기간, 이상치 제거 등 1시간 내 50% 이상의 유효 자료에 대해서 1 시간 평균값을 확정하였다.

2.3 입자상 성분 분석

본 연구는 입자상 성분 분석을 위해서 자체 제작한

PM_{2.5} 자동 포집기를 이용하여, 유량 42 liter per minute (lpm) 조건하에 48시간 동안 90 mm 석영 필터 (Pallflex, 2500QATUP, Pall Corp., USA)에 연속 포집 하였다. 석영 필터는 포집 전 불순물을 제거하기 위해 450℃에서 최소 6시간 동안 전처리를 통해 공시료에 존재할 수 있는 미량의 탄소 성분을 최대한 제거한 후 사용하였다. 시료는 매월 1일부터 24일까지 각 측정 소당 12개 시료를 포집하였고, 월말까지 남은 기간은 채취된 시료의 회수 및 유량 등 기기 점검을 수행하기 위해 시료를 포집하지 않았다. 본 연구기간 동안 총 288개 시료를 포집하여 분석하였다.

석영 필터에 포집된 시료를 대상으로 수용성 이온 성분 분석을 수행하였다. 포집 필터를 증류수 10 mL와 함께 초음파기 (8800, Branson, USA)를 이용하여 2시 간 동안 항온 추출한 후 음이온 (Metrohm 930 Switzerland, Metrosp A Supp 150/4.0 column, 3.7 mM Na₂CO₃ & 1.0 mM NaHCO₃) 및 양이온 이온크로마토그래피 (Metrohm 930 Swizerland, Metrosep C4-250/4.0 column, 5 mM HNO₃)를 이용하여 정량화하였다. 탄소 성분 (OC, EC) 분석은 포집된 석영 필터를 1.5 cm²로 편치 후, NIOSH 5040 기반의 Thermal-Optical Transmittance (TOT) 방법을 이용한 탄소 분석기 (Lab based OCEC Carbon Aerosol Analyzer, Sunset laboratory Inc., USA)를 이용하여 정량화하였다. 최소 10% 시료 에 대해서 재차 분석 및 분석시료 15%마다 calibration check 등을 진행하였으며, 오차범위 100±5% 이내에 서 정확, 정밀도를 나타냈다. 자세한 분석 및 Quality Assurance & Quality Control (QAQC)는 선행 연구에 나타냈다(Song *et al.*, 2022; Song *et al.*, 2020).

2.4 가스상 - 입자상 비율

NOR은 산화된 전체 N에 대한 PM_{2.5}의 NO₃⁻ 몰비 로 밑의 식 1에 의해 정의되며 (Meng *et al.*, 2020; Hu *et al.*, 2014), NHR은 NH₃에 대한 NH₄⁺의 비율로 식 2와 같이 표현된다(Meng *et al.*, 2018).

 $NOR = [NO_3^{-}]/([NOx] + [NO_3^{-}])$ (1)

$$NHR = [NH_4^+]/([NH_3] + [NH_4^+])$$
(2)

본 연구는 농업지역의 SO₂, NO₂ 대기산화정도의 차이를 조사하기 위해 수식을 활용하여 계절별 NOR, NHR을 최종 산출하였다.

3. 결 과

3.1 입자상 및 가스상 성분특성

표 1은 연구기간 동안 부안과 고창에서 측정한 PM₁₀, PM_{2.5}, PM_{2.5} 내 주요 화학적(OC, EC, NH₄⁺, NO₃⁻, SO₄²⁻) 성분 및 가스상(NH₃, NO, NO₂, SO₂, O₃) 성분들의 48시간 기준 평균 농도를 나타낸 것이 다. 그림 2는 실시간으로 측정한 온도, 상대습도 및 PM₁₀, PM_{2.5}, 가스상 성분(NH₃, NO, NO₂, SO₂, O₃) 농도 추이를 나타낸 것이다. 고창의 2022년 여름철의 경우 NH₃ 기기 작동의 오류로 유효자료를 측정하지 못하였다. 측정기간 동안 부안과 고창의 기상 조건은 온도(13.9, 14.1°C), 습도(78.5, 76.9%)는 매우 유사하 게 나타났다. 기상 변수는 대기 성분 및 농도에 영향을 주는 중요한 요소 중 하나로 작용한다(Sonwani *et al.*,

		Unit	Buan	Gochang
PM	PM ₁₀	µg/m ³	38.3 ± 24.1	34.8±23.5
(Beta-ray)	PM _{2.5}	$\mu g/m^3$	21.8 ± 12.5	15.7 ± 9.9
	ос	µg/m³	4.3±2.5	3.9±2.4
	EC	µg/m³	0.4 ± 0.2	0.4 ± 0.2
PM _{2.5}	NH_4^+	µg/m³	2.6 ± 2.0	2.5 ± 1.9
	NO₃ [−]	µg/m³	4.4 ± 6.0	4.1 ± 5.5
	SO4 ²⁻	$\mu g/m^3$	3.1 ± 1.7	3.1±1.6
	NH₃	ppb	23.9±11.2	31.4±12.8
	NO	ppb	1.3 ± 0.8	1.5 ± 1.3
Gas	NO ₂	ppb	4.4 ± 2.7	4.1 ± 2.1
	SO ₂	ppb	2.6 ± 0.9	1.4 ± 0.6
	O ₃	ppb	34.0 ± 10.3	32.7±8.9

2021). 부안 및 고창의 PM10 평균 농도는 38.3, 34.8 μg/m³였으며 PM₂₅는 21.8, 15.7 μg/m³로 부안이 약 1.5 (0.9~6.2)배 높게 나타났다. PM25는 부안과 고창 모두 오전 7시부터 점차 증가한 후 오전 10시부터 소 폭 감소하는 경향을 보였으며 저녁 7시에 다시 증가하 는 경향을 나타냈다. 인간 산업 활동에 의한 영향을 받 은 것으로 보여진다. PM25 계절별 농도는 측정 지점 모두 겨울, 봄, 가을, 여름 순으로 높았다. 여름철의 경 우 장마 영향으로 낮은 농도를 보였고, 4계절 모두 부 안이 고창보다 높게 관측되었다. PM10/PM25 비율은 부안, 고창 각각 1.8 (1.1~6.4), 2.4 (1.4~7.3)로 고창이 더 높았다. PM₁₀은 측정기간 동안 8차례 발생한 황사 의 영향으로 봄철에 가장 높게 나타났다. 특히, 황사가 발생한 날의 PM₁₀ 평균 농도는 105.2 µg/m³로 외부 유 입의 영향이 적지 않음을 알 수 있었다. 황사는 12월 (13일), 1월(7, 8, 20일), 3월(23, 24일), 4월(12, 13, 16, 22일), 5월(22, 23일)에 총 12번 발생하였고, 황사가 발 생하지 않은 날의 PM₁₀ (36.3 µg/m³)보다 약 2.8배 높 았다. OC 농도는 부안이 고창보다 높았으며 EC 농도 는 동일한 평균 농도가 관측되었다. EC는 주로 연소 과 정에서 발생하는 1차 오염물질이며 대기 중에서 화학 반응 또는 상변화가 거의 일어나지 않는다고 알려져 있다(Zhang et al., 2017). 본 연구에서 측정한 OC와

 Table 1. Summary statistics of average concentrations of measured species in rice (Buan) field (Gochang) areas of Jeollabuk-do during the measurement period.

Fig. 2. Hourly time series results of temperature, relative humidity, PM₁₀, PM_{2.5}, NO, NO₂, NH₃, O₃, SO₂ measurements in rice (Buan) field (Gochang) areas of Jeollabuk-do.

EC의 상관성을 분석한 결과, 부안(r²=0.67)이 고창 (r²=0.48)보다 높아 부안에서 발생한 OC가 1차 배출 원의 기여가 상대적으로 더 크게 나타났다. 부안과 고 창에서 관측된 2차 무기염 입자(NH₄⁺, NO₃⁻, SO₄²⁻) 평균 농도는 유사하게 나타났고, NO₃⁻가 각각 4.4, 4.1 µg/m³로 가장 높았다. 또한 부안 및 고창에서 발생한 PM_{2.5} 내 NO₃⁻가 차지하는 기여율은 각각 20.1, 26.3% 로 가장 높았다. 부안과 고창 NO₃⁻는 기온이 낮아지 는 겨울철(8.2, 8.0µg/m³)에 가장 농도가 높았고, 여름 철(0.9, 1.1µg/m³)에 가장 낮았다. 기온의 영향을 받는 NO₃⁻는 겨울에는 대부분 입자상으로 존재하고, 기온 이 높은 여름에는 가스상으로 존재하므로 NO₃⁻ 농도 는 여름에 낮고 겨울에 높은 뚜렷한 계절적 거동특성 을 보였다. NO, NO₂도 겨울철에 가장 높았고, 여름철 에 가장 낮았다. 자동차 배기가스와 각종 화석연료의 연소 활동을 통해 배출된 NO₂가 대기 정체와 높은 상 대습도, 낮은 온도와 같은 기상조건 등의 영향이 결합 되어 NO₃⁻ 생성을 촉진시킨 결과이다. NH₄⁺도 여름 철(1.6, 1.5 µg/m³)보다 겨울철(3.6, 3.6 µg/m³)에 높은 농도가 관측되었다. OH 라디칼, O₃와 같은 산화제의 활발한 광화학 반응에 의한 여름철 부안과 고창 SO₄²⁻ 는 각각 3.1, 3.4 µg/m³로 가장 높았다.

일반적으로 기상조건(온도, 습도, 풍속 등), 배출량, 기체-입자로의 대기변환 과정, 장거리 이동 등은 계절 별로 달라 동일한 측정지점에서 PM_{2.5}의 화학적 성분 들의 농도는 계절변화를 수반한다. 농경지 여름철은 작물의 성장기이며 이 기간은 주로 작물 성장에 필요 한 비료 및 농약 등을 살포하는 시기이다. 가을철은

1055

작물의 수확 기간으로 수확에 필요한 농기계 활용, 수 확 과정에서 토양 비산, 탈곡 등의 농업활동이 활발하 다. 겨울철은 수확 후 휴경기간이다. 그림 3은 부안 및 고창에서 관측한 NH₃, NOx, SO₂, O₃ 농도와 기상조 건(풍향, 풍속, 온도, 상대습도)에 대한 계절별 일 중 시간 평균을 나타낸 것이다. 부안 풍속은 가을, 여름, 봄, 겨울 순이었으며, 고창 풍속은 여름, 가을, 겨울, 봄 순이었고, 여름을 제외한 부안이 고창보다 풍속이 더 크게 나타났다. 상대습도와 온도는 반비례적인 경향 을 보였다. 연구기간 동안 부안과 고창에서 발생한 가 스상 성분은 유사한 패턴을 보였다. NO3⁻의 주요 1차 전구물질 NO,는 오전 출근시간에 가장 높은 농도를 나타냈으며, 이에 따른 O3 광화학적 일 중 농도 변이 가 나타났다. 부안과 고창 NH,는 야간 시간에 가장 높은 농도를 보였다. 계절별 농도는 부안의 여름철(장 마철)을 제외하고 뚜렷하게 나타나지 않았다. 야간 시 간대 고농도 NH,는 토양으로부터 배출되는 NH,의 양이 일정하다고 가정할 때, 대기경계층에 의한 증가 로 해석된다(Shephard et al., 2019; Zöll et al., 2016).

2020년에 대기정책지원시스템(Clean Air Policy Support System, CAPSS) 자료에 의하면 비료사용농경지 에서 배출되는 NH₃는 부안(325톤)이 고창(268톤)보 다 많았고, 축사 관련 배출원, 노천 및 농업잔재물 소 각으로부터 배출되는 NH₃는 고창이 더 많았다. 본 연 구에서 관측한 NH₃는 고창(31.4 ppb)이 부안(23.9 ppb)보다 높게 나타났다. 고창에서 발생한 NH, 일별 변화는 부안과 달리 오전부터 새벽까지 꾸준하게 증 가하는 추세를 보여준다. 밭농사는 논농사와 다르게 계절별로 파종하고 수확할 수 있는 작물이 다양하기 에 오전에 토양에 살포한 비료가 오후에 온도 증가에 따라 NH₃는 대기 중으로 휘발되어 나타난 결과로 해 석된다. 최근 삼원촉매장치가 부착된 휘발유 및 LPG 차량에서 다량의 NH₃가 배출된다고 보고되고 있다 (Wang et al., 2019; Suarez-Bertoa et al., 2014; Livingston et al., 2009). 연구기간 동안 NH₃와 NO₂의 상관성 을 살펴본 결과, 고창(r²=0.68)이 부안(r²=0.32)보다 더 높았다. 앞서 고창이 부안보다 높았던 NH₃가 지역 차량 배출의 영향도 받았음을 의미한다. 지역 SO, 배

Fig. 3. Seasonal vatiations in time of day of wind speed & direction, temperature, relative humidity, PM₁₀, PM_{2.5}, NO, NO₂, NH₃, O₃, SO₂ measurements in rice (Buan) field (Gochang) areas of Jeollabuk-do.

출에 의한 영향으로 뚜렷한 일 중 변이가 두 측정지역 모두 강하게 나타났다. 근거리에 특정 배출원이 없는 것을 볼 때, 주변 산업체 배출에 따른 농도 증가로 해 석되며 이에 대한 추가 분석을 진행할 예정이다.

그림 4는 48시간 기준 PM_{2.5}와 PM_{2.5} 내 주요 화학적 (NH₄⁺, NO₃⁻, SO₄²⁻) 성분의 상관관계를 나타낸 것이 다. 탄소 성분 기여도는 부안 및 고창 각각 22, 32%였 고, 2차 무기염 입자는 각각 43, 64%로 고창이 부안보 다 크게 나타났다. 또한 부안과 고창에서 PM_{2.5}와 2차 무기염 입자의 높은 상관성 (r²=0.69, 0.74)은 PM_{2.5} 생성에 영향을 주었음을 알 수 있다.

3.2 2차 무기염 입자 생성률

위에서 설명한 바와 같이, 부안과 고창에서 PM_{2.5}와 2차 무기염 입자의 높은 상관성은 2차 무기염 입자 형 성 반응의 주성분이 NH₃의 영향이 매우 높을 것으로 판단된다. 이에, 본 연구에서는 PM_{2.5}에 함유된 NO₃⁻, SO₄²⁻, NH₄⁺의 몰비를 분석하였다. 선행 연구에 의하 면 SO₂ 농도가 높을 경우, NH₄⁺가 충분히 SO₄²⁻를 중 화시키지 못해 [NH₄⁺]/[SO₄²⁻] 몰비가 1.5보다 작은 값을 나타내고, [NO₃⁻]/[SO₄²⁻] 몰비가 1.5 이하이면 PM25의 SO42-의 기여도가 큰 것으로 간주된다(Arimoto et al., 1996). 또한, [NH4⁺]/[SO4²⁻]의 몰비가 1.5보다 큰 경우 [NO₃⁻]/[SO₄²⁻]가 높을수록 HNO₃를 NH4NO3로 중화시키는 데 필요한 NH3가 충분히 존 재한다는 것을 의미한다. 이에 [NH4⁺]/[SO4²⁻] 몰비 가 1.5 이상 또는 [NO3⁻]/[SO4²⁻] 몰비가 증가할수 록 PM2 5의 NO3 - 의 기여도가 크고 ammonium-rich로 정의된다. 본 연구에서 [NH4⁺]/[SO4²⁻] 몰비는 부안 및 고창 각각 4.8, 4.6이었고, [NO₃⁻]/[SO₄²⁻] 몰비 는 각각 2.2, 1.9로 나타났다(그림 5). 이러한 결과는 부안 및 고창 두 지역 모두 대기 중 ammonium-rich 상태로 NH₃가 풍부하게 존재하여 HNO₃, (NH₄)₂SO₄, (NH₄)₃H(SO₄)₂, NH₄NO₃가 PM_{2.5}에 다량 함유된 것 으로 해석된다. 또한 [NO₃⁻]/[SO₄²⁻] 몰비는 클수록 NO2 및 SO2에 자동차와 같은 이동 오염원의 기여도 가 크고, [NO₃⁻]/[SO₄²⁻]가 작을수록 NO₂ 및 SO₂에 대한 석탄 연소와 같은 고정 오염원의 기여가 증가한 다(Wu et al., 2019). 부안과 고창의 [NO₃⁻]/[SO₄²⁻] 몰 비가 여름철 (0.5, 0.4)에는 아주 낮은 반면, 겨울철 (3.9, 3.7)은 큰 값을 보였다. Lee et al. (2004)는 NOx로 부터 전환이 많을수록 대기 중 HNO, 농도가 높아져

Fig. 4. 48-hr averaged time series results of OCEC, sulfate, nitrate, & ammonium and scatter plot between sum of sulfate, nitrate, & ammonium and PM_{2.5} in rice (Buan) field (Gochang) areas of Jeollabuk-do.

NO₃⁻ 농도가 함께 증가하는 반면, 대기 중 NH₄⁺ 농도 가 낮으면 입자의 산성도가 높아져서 HNO₃는 입자 상에 머물지 못하고 가스상으로 존재하게 된다. 이는 [NO₃⁻]/[SO₄²⁻]가 높을수록 HNO₃을 NH₄NO₃로 중 화시키는 데 필요한 NH₃가 충분히 존재한다는 것을 의미한다. 결과적으로 이러한 결과는 여름철에 NO₃⁻ 생성보다 SO₄²⁻ 생성에 우호적인 대기조건이 조성되 었고, 겨울철은 NO₃⁻ 생성에 우호적인 대기조건이 조 성되어 여름철에 비해 [NO₃⁻]/[SO₄²⁻] 몰비가 증가하 였다.

부안 및 고창은 대기 중 암모니아가 풍부한 상태에 서 SO₂에 의한 H₂SO₄와 반응하여 ((NH₄)₂SO₄)를 생 성한다. 부안에서 SO₂는 SO₄²⁻와 낮은 상관성을 나타 내 측정소 주변에서 배출된 SO₂의 화학적 변환에 의 한 생성보다 장거리 유입된 SO₄²⁻의 영향이 상대적으 로 크게 나타났으며, NO₂와 NO₃⁻는 부안과 고창 모 두 좋은 상관관계 (r²=0.57, 0.51)를 보여, 지역에서 배출된 NOx의 광화학적 반응에 의한 NO₃⁻ 생성이 주 요인으로 나타났다(Wen *et al.*, 2015).

NOx, SO₂, NH₃와 같은 기체상 전구물질과 2차 무 기염 입자 간의 상관성을 확인하기 위하여 2차 무기 염 입자에 대한 생성률을 계산하였다. NOR은 대기 중에 존재하는 NOx가 NO₃⁻로 산화된 정도를 나타내 는 양을 나타낸다. NOR이 높을수록 전구물질의 산화 가 활발해져 더 많은 2차 무기염 입자를 생성해 대기 에 존재할 수 있다(Wang et al., 2005). NOR은 1차 배 출원이 우세한 경우 0.1 이하이고, NOx가 광화학적으 로 산화되었을 때 0.1보다 높게 나타난다(Wang et al., 2021; Sun et al., 2006). 고창 측정소의 경우, 기기 이상 으로 6~9월까지 NH₃ 관측 결과가 없기 때문에 제외 한 결과 값을 활용하였다. NOR, NHR 결과는 표 2와 그림 6에서 보여주고 있으며 부안과 고창에서 평가한 생성률은 모두 유사한 결과를 나타냈다. 부안, 고창의 NOR, NHR 평균은 각각 0.2, 0.1이었으며 0.1보다 큰 값으로 가스상 전구물질의 광화학 반응이 활발하게 일어났음을 알 수 있었다. 부안의 NOR은 겨울(0.36), 가을(0.21), 봄(0.21), 여름(0.16) 순으로 높았고, 일변 화는 PM_{2.5}와 유사하게 나타났다. NOR 및 PM_{2.5}의 상 관성을 확인한 결과, 양의 상관성(r²=0.53)을 보였다.

Table 2. Seasonal NOR, NHR results in rice (Buan) field (Gochang) areas of Jeollabuk-do.

NOR	Spring	Summer	Fall	Winter	Overall
Buan	0.21	0.16	0.21	0.36	0.24
Gochang	0.22	0.15	0.17	0.36	0.23
NHR	Spring	Summer	Fall	Winter	Overall
Buan	0.09	0.06	0.09	0.14	0.10
Gochang	0.09	-	0.08	0.07	0.09

Fig. 5. Nitrate to sulfate molar ratio as a function of as a function of ammonium to sulfate molar ratio in rice (Buan) field (Gochang) areas of Jeollabuk-do.

Fig. 6. 48-hr averaged time series results of NHR & NOR and scatter plot between NHR & NOR colored by PM_{2.5} in rice (Buan) field (Gochang) areas of Jeollabuk-do.

또한, NOR 및 NHR의 상관관계도 (r²=0.51) 높게 나 타나, 부안 측정지점은 대기 중 지역적 NH₃가 PM_{2.5} 농도에 영향을 미치고 있다(그림 6). 고창의 NOR은 겨울(0.36), 봄(0.22), 가을(0.17), 여름(0.15) 순으로 높았고, NOR 및 PM_{2.5}과 양의 상관성(r²=0.57)을 보 여주었다. 또한 부안과 고창에서 NOR과 NH₄⁺은 양 의 상관관계(r²=0.60, 0.68)를 보여 NOx로부터 생성 된 NO₃⁻가 NH₄NO₃ 생성에 주요하게 작용했음을 나 타낸다. 이러한 결과는 고창과 부안의 NH₄⁺가 NO₂ 의 산화에 대한 제어 요인으로 작용할 수 있다.

4. 결 론

본 연구는 농업지역에서 발생하는 PM_{2.5}를 생성하 는 원인물질을 파악하고자 부안과 고창에서 1년 동안 PM_{2.5} 및 화학적 성분 측정을 수행하였다. 또한 PM_{2.5} 의 화학적 특성의 차이를 유발하는 인자들을 규명하기 위하여 가스상 전구물질로부터 2차 무기성분을 분석 하여 계절별 nitrate oxidation ratio (NOR) 및 ammonium conversion ratio (NHR)을 산출하였다. 부안, 고 창의 NOR, NHR 평균은 각각 0.2, 0.1로 분석되었다. NH₃는 계절별 농도가 큰 차이를 나타내지 않아, 토양 배출이 일정하다고 가정할 때, 일 중 기상 환경 영향 을 상대적으로 크게 받았다. 부안과 고창 NO₃ 는 기 온이 낮은 겨울에는 대부분 입자상으로 존재하고, 기 온이 높은 여름에는 가스상으로 존재한 결과로 뚜렷 한 계절적 거동특성을 보였다. 또한 NO₃ 는 지역 1차 배출에 의한 국지적 생성의 영향을 받았다. 본 연구 결과는 부안과 고창에서 발생하는 NO₃ 의 형성은, 지 역 토양 발생 NH₃로부터 기인한 NH₄⁺가 제어 요인 으로 작용하는 것으로 판단한다. 본 연구 결과는 논밭 지역 등 농업지역에 배출되는 계절별 NH₃를 비롯한 전구가스성분에 대한 PM_{2.5} 질량 농도에 대한 생성 규명에 매우 중요한 기초자료로 활용될 수 있다.

감사의 글

본 연구는 국립농업과학원(RS-2022-RD010418) 지 원으로 수행되었습니다. 전구가스성분 측정 및 성분 분석에 수고한 모든 연구원분들께 깊은 감사드립니다.

References

- Aneja, V.-P., Schlesinger, W.-H., Erisman, J.-W. (2009) Effects of agriculture upon the air quality and climate: research, policy, and regulations, Environmental Science & Technology, 43(12), 4234-4240. https://doi.org/10. 1021/es8024403
- Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., Ray, B.J. (1996) Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A, Journal of Geophysical Research: Atmospheres, 101(D1), 2011-2023.
- Bogman, P., Cornelis, W., Rolle, H., Gabriels, D. (2005) Prediction of TSP and PM₁₀ emissions from agricultural operations in Flanders, Belgium. http://www.dustconf.com/ CLIENT/DUSTCONF/UPLOAD/S9/BOGMAN_B.PDF
- Cassel, T., Trzepla-Nabaglo, K., Flocchini, R. (2003) PM₁₀ emission factors for harvest and tillage of row crops. http:// www.epa.gov/ttnchie1/conference/ei12/poster/cas sel.pdf
- Chen, L.-W.-A., Chow, J.-C., Doddridge, B.-G., Dickerson, R.-R., Ryan, W.-F., Mueller, P.-K. (2003) Analysis of a summertime PM_{2.5} and haze episode in the mid-Atlantic region, Journal of the Air & Waste Management Association, 53, 946-956. https://doi.org/10.1080/1047328 9.2003.10466240
- Chen, W., Tong, D.-Q., Zhang, S., Zhang, X., Zhao, H. (2017) Local PM₁₀ and PM_{2.5} emission inventories from agricultural tillage and harvest in northeastern China, Science Direct, 57, 15-23. https://doi.org/10.1016/j.jes.2016. 02.024
- Goossens, D., Riksen, M. (2004) Wind Erosion and Dust Dynamics: Observations, Simulations Modeling. ESW Publications, Netherlands, pp. 7-14.
- Hinz, T., Ronnpagel, B., Linke, S. (2002) Particulate Matter in and from Agriculture, Landbauforschung Völkenrode, pp. 15-25.
- Holmén, B.-A., Miller, D.-R., Hiscox, A.-L., Yang, W., Wang, J., Sammis, T., Bottoms, R. (2008) Near-source particulate emissions and plume dynamics from agricultural field operations, Journal of Atmospheric Chemistry, 59(2), 117-134.
- Hu, G., Zhang, Y., Sun, J., Zhang, L., Shen, X., Lin, W., Yang, Y. (2014) Variability, formation and acidity of water-soluble ions in PM_{2.5} in Beijing based on the semi-continuous observations, Atmospheric Research, 145, 1-11. https://doi.org/10.1016/j.atmosres.2014.03.014
- Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., Zhu, T.

(2011) Chemical characteristics of inorganic ammonium salts in PM_{2.5} in the atmosphere of Beijing (China). Atmospheric Chemistry and Physics, 11, 10803e10822. https://doi.org/10.5194/acp-11-10803-2011

- Jiang, B., Xia, D. (2017) Role identification of NH₃ in atmospheric secondary new particle formation in haze occurrence of China, 163, 107-117. https://doi.org/10.1016/ j.atmosenv.2017.05.035
- Kasumba, J., Holmén, B.-A., Hiscoxb, A., Wang, J.-M., Miller, D. (2011) Agricultural PM₁₀ emissions from cotton field disking in Las Cruces, NM, Atmospheric Environment, 45(9), 1668-1674. https://doi.org/10.1016/j.atmosenv. 2011.01.004
- Lee, S., Ghim, Y.-S., Kim, Y.-P., Kim, J.-Y. (2004) Seasonal Variation of Nitrate in the Greater Seoul Area Using a Photochemical Box Model and a Gas/Aerosol Equilibrium Model, Journal of Korean Society for Atmospheric Environment, 20(6), 729-738, (in Korean with English abstract).
- Li, H., Ma, Y., Duan, F., He, K., Zhu, L., Huang, T., Kimoto, T., Ma, X., Ma, T., Xu, L., Xu, B., Yang, S., Ye, S., Sun, Z., An, J., Zhang, Z. (2017) Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution, Environmental Pollution, 229, 339-349. https://doi.org/10.1016/j.env pol.2017.05.081
- Livingston, C., Rieger, P., Winer, A. (2009) Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin, Atmospheric Environment, 43(21), 3326-3333. https://doi.org/10.1016/j.atmosenv.2009.04.009
- Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Lu, X., Tian, P., Han, Z., Xia, X., Wang, Y., Zhang, R. (2017) Roles of regional transport and heterogeneous reactions in the PM_{2.5} increase during winter haze episodes in Beijing, Science of The Total Environment, 599-600, 246-253. https://doi.org/10.1016/j.scitotenv.2017.04.193
- Meng, Z., Wu, L., Xu, X., Xu, W., Zhang, R., Jia, X., Liang, L., Miao, Y., Cheng, H., Xie, Y., He, J., Zhong, J. (2020) Changes in ammonia and its effects on PM_{2.5} chemical property in three winter seasons in Beijing, China, Science of The Total Environment, 749, 142208. https://doi.org/ 10.1016/j.scitotenv.2020.142208
- Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., Jia, S., Zhang, R., Peng, W., Wang, Y., Cheng, H., Yang, W., Zhao, H. (2018) Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain, Atmospheric Chemistry and Physics, 18(1), 167-184. https://doi.org/10.5194/acp-18-167-2018
- Pattey, E., Qiu, G. (2010) Primary particulate matter emissions

from Canadian agriculture. A&WMA International Specialty Conference: Leapfrogging Opportunities for Air Quality Improvement. 9-14 May 2010, Xi'an, China (https://www.dri.edu/images/stories/editors/ leapfrog/techprog/lla_6_Pattey.pdf).

Saxena, M., Sharma, A., Sen, A., Saxena, P., Saraswati, Mandal, T.-K., Sharma, S.-K., Sharma, C. (2017) Water soluble inorganic species of PM₁₀ and PM_{2.5} at an urban site of Delhi, India: Seasonal variability and sources, Atmospheric Research, 184, 112-125. https://doi.org/ 10.1016/j.atmosres.2016.10.005

1060

- Shephard, M.-W., Dammers, E., Cady-Pereira, K.-E., Kharol, S.-K., Thompson, J., Gainariu-Matz, Y., Zhang, J., McLinden, C.-A., Kovachik, A., Moran, M., Bittman, S., Sioris, C.-E., Griffin, D., Alvarado, M.-J., Lonsadale, C., Savic-Jovcic, V., Zheng, Q. (2019) Ammonia measurements from space with the Cross-track Infrared Sounder: characteristics and applications, Atmospheric Chemistry and Physics, 20, 2277-2302. https://doi.org/10.5194/acp 20-2277-2020
- Song, M., Kim, M., Kim, M., Lee, G.-H., Bae, M.-S. (2020) Relationship between Long-range Transport of Ammonia and Ammonium in Wintertime in Suburban Area, Journal of Korean Society for Atmospheric Environment, 36(4), 543-557, (in Korean with English abstract). https://doi. org/10.5572/KOSAE.2020.36.4.543
- Song, M.-K., Park, J.-S., Kim, M.-S., Oh, S.-H., Choe, S.-Y., Yu, G.-H., Lee, T.-H., Bea, M.-S. (2022) Chemical Characteristics and Oxidation Potential of PM_{1.0} at a Suburban Location in Metropolitan Area, Journal of Korean Society for Atmospheric Environment, 38(3), 437-450, (in Korean with English abstract). https://doi.org/10. 5572/KOSAE.2022.38.3.437
- Sonwani, S., Saxena, P., Shukla, A. (2021) Carbonaceous aerosol characterization and their relationship with meteorological parameters during summer monsoon and winter monsoon at an industrial region in Delhi, India, Earth and Space Science, 8(4), e2020EA001303. https://doi.org/10.1029/2020EA001303
- Suarez-Bertoa, R., Zardini, A.-A., Astorga, C. (2014) Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle, Atmospheric Environment, 97, 43-53. https://doi.org/10.1016/j.atmos env.2014.07.050
- Sun, Y., Zhuang, G., Tang, A., Wang, Y., An, Z. (2006) Chemical characteristics of PM_{2.5} and PM₁₀ in haze-fog episodes in Beijing, Environmental Science & Technology, 40(10), 3148-3155. https://doi.org/10.1021/es051533g
- Sun, Y.-L., Wang, Z.-F., Fu, P.-Q., Yang, T., Jiang, Q., Dong, H.-B., Li, J.,

Jia, J.-J. (2013) Aerosol composition, sources and processes during wintertime in Beijing, China, Atmospheric Chemistry and Physics, 13(9), 4577-4592. https://doi.org/10.5194/acp-13-4577-2013

- Walker, J.-T., Robarge, W.-P., Shendrikar, A., Kimball, H. (2006) Inorganic PM_{2.5} at a US agricultural site. Environmental Pollution, 139(2), 258-271. https://doi.org/10. 1016/j.envpol.2005.05.019
- Wang, C., Tan, J., Harle, G., Gong, H., Xia, W., Zheng, T., Yang, D., Ge, Y., Zhao, Y. (2019) Ammonia Formation over Pd/ Rh Three-Way Catalysts during Lean-to-Rich Fluctuations: The Effect of the Catalyst Aging, Exhaust Temperature, Lambda, and Duration in Rich Conditions, Environmental Science & Technology, 53(21), 12621-12628. https://doi.org/10.1021/acs.est.9b03893
- Wang, H., Wang, S., Zhang, J., Li, H. (2021) Characteristics of PM_{2.5}
 Pollution with Comparative Analysis of O₃ in Autumn-Winter Seasons of Xingtai, China, Atmosphere, 12(5), 569. https://doi.org/10.3390/atmos12050569
- Wang, J., Miller, D.-R., Sammis, T.-W., Hiscox, A.-L., Yang, W.-L., Holmén, B.-A. (2010) Local dust emission factors for agricultural tilling operations, Soil Science, 175(4), 194-200. https://doi.org/10.1097/SS.0b013e3181dae283
- Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., Zheng, A.
 (2005) The ion chemistry and the source of PM_{2.5} aerosol in Beijing, Atmospheric Environment, 39(21), 3771-3784. https://doi.org/10.1016/j.atmosenv.2005.
 03.013
- Wen, L., Chen, J., Yang, L., Wang, X., Xu, C., Sui, X., Yao, L., Zhu, Y., Zhang, J., Zhu, T., Wang, W. (2015) Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone, Atmospheric Environment, 101, 294-302. https://doi.org/10.1016/j.atmosenv.2014.11. 037
- Wu, P., Huang, X., Zhang, J., Luo, B., Luo, J., Song, H., Zhang, W., Rao, Z., Feng, Y., Zhang, J. (2019) Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis, Environmental Science and Pollution Research, 26(3), 2649-2661. https://doi.org/10.1007/ s11356-018-3630-6
- Zhang, H., Hu, J., Qi, Y., Li, C., Chen, J., Wang, X., He, J., Wang, S., Hao, J., Zhang, L., Zhang, L., Zhang, Y., Li, R., Wang, S., Chai, F. (2017) Emission characterization, environmental impact, and control measure of PM_{2.5} emitted from agricultural crop residue burning in China, Journal of Cleaner Production, 149, 629-635. https://doi. org/10.1016/j.jclepro.2017.02.092

- Zhang, Y., Huang, W., Cai, T.-Q., Fang, D.-Q., Wang, Y.-Q., Song, J., Hu, M., Zhang, Y.-X. (2016) Concentrations and chemical compositions of fine particles (PM_{2.5}) during haze and non-haze days in Beijing, Atmospheric Research, 174-175, 62-69. https://doi.org/10.1016/j.atmosres. 2016.02.003
- Zheng, G.-J., Duan, F.-K., Su, H., Ma, Y.-L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Poschl, U., Cheng, Y.-F., He, K.-B. (2015) Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmospheric Chemistry and Physics, 15, 2969-2983. https://doi.org/10.5194/acp-15-2969-2015
- Zöll, U., Brümmer, C., Schrader, F., Ammann, C., Ibrom, A., Flechard, C.-R., Nelson, D.-D., Zahniser, M., Kutsch, W.-L. (2016) Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modelling, Atmospher-

ic Chemistry and Physics, 16, 11283-11299. https:// doi.org/10.5194/acp-16-11283-2016

Authors Information

- 김민욱(국립농업과학원 연구사) (minuk09@korea.kr) 유근혜(국립목포대학교, 연구교수) (fanygh89@mnu.ac.kr) 김진호(국립농업과학원 연구관) (water86@korea.kr) 송명기(국립목포대학교, 연구교수) (msong@mnu.ac.kr) 오세호(국립목포대학교, 박사과정) (osh9119mnudk@mokpo.ac.kr) 최서영(국립목포대학교, 석사과정) (S184221@365.mokpo.ac.kr) 전하정(국립목포대학교, 학사과정) (S214210@365.mokpo.ac.kr)
- 선아정(국립목포대학교, 약사과정)(\$214210@365.mokpo.ac.kr) 고동훈(국립목포대학교, 학사과정)(ehdgns8011@mokpo.ac.kr) 배민석(국립목포대학교, 교수)(minsbae@mnu.ac.kr)