

Journal of Korean Society for Atmospheric Environment Vol. 39, No. 6, December 2023, pp. 931-946 https://doi.org/10.5572/KOSAE.2023.39.6.931 p-ISSN 1598-7132, e-ISSN 2383-5346

논 문

충남 서산 지역 2020년 겨울철 측정 방법에 따른 Brown Carbon (BrC)의 광흡수 계수 특성 비교

Intercomparison of Light Absorbing Characteristics of Brown Carbon (BrC) According to Analytical Methods at a Suburban Site in Seosan, Chungnam during Winter 2020

이혜연^{1),2)}, 옥수민^{1),2)}, 김나은^{1),3)}, 이광열⁴⁾, 정민혜⁴⁾, 신혜정⁴⁾, 양재환²⁾, 정진상^{1),*}

¹⁾한국표준과학연구원 가스분석표준그룹, ²⁾충남대학교 환경공학과, ³⁾전북대학교 지구환경과학과, ⁴⁾국립환경과학원 기후대기연구부 대기환경연구과

Hye Yeon Lee^{1),2)}, Sumin Ok^{1),2)}, Naeun Kim^{1),3)}, Kwangyul Lee⁴⁾, MinHye Jung⁴⁾, Hye-Jung Shin⁴⁾, Jae-Hwan Yang²⁾, Jinsang Jung^{1),*}

Received 3 July 2023 Revised 2 August 2023 Accepted 3 August 2023

*Corresponding author Tel: +82-(0)42-868-5934

E-mail : jsjung@kriss.re.kr

¹⁾Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS),

Daejeon, Republic of Korea

²⁾Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea

³⁾Department of Earth and Environmental Sciences, Jeonbuk National University, Jeonbuk, Republic of Korea

⁴⁾Department of Atmospheric Environment, National Institute of Environmental Research (NIER), Incheon, Republic of Korea

Abstract In order to compare light absorption characteristics of atmospheric brown carbon (BrC) according to analytical methods, $PM_{2.5}$ samples were collected at the Chungcheong Air Environment Research Center located in Seosan-si, Chungcheongnam-do during winter 2020. After aqueous extraction of the $PM_{2.5}$ samples, the light absorption coefficient of BrC ($b_{absr}BrC$) was analyzed using a liquid waveguide capillary cell (LWCC) coupled with a UV/Vis spectrometer. $b_{absr}BrC$ was also retrieved from 7- λ light absorption coefficients measured by an AE33 aethalometer. During the entire measurement period, average organic carbon (OC) and elemental carbon (EC) concentrations were measured to be $4.5 \pm 3.9 \,\mu$ gC/m³ and $1.5 \pm 1.2 \,\mu$ gC/m³, respectively, whereas water-soluble OC (WSOC) concentration was $1.4 \pm 0.55 \,\mu$ gC/m³. Average $b_{absr}BrC$ at 370 nm measured by the LWCC-UV/Vis spectrometer and aethalometer were $1.40 \pm 0.6 \,Mm^{-1}$ and $17.0 \pm 9.4 \,Mm^{-1}$, respectively. Mass absorption efficiency (MAE) of BrC at 370 nm obtained by the LWCC-UV/Vis spectrometer and aethalometer were determined to be $1.0 \pm 0.2 \,m^2 \,g^{-1}$ and $11.6 \pm 3.2 \,m^2 \,g^{-1}$, respectively. It was found that $b_{absr}BrC$ and MAE obtained by the aethalometer were much higher than those by the LWCC-UV/Vis spectrometer, indicating that light absorption characteristics of BrC is highly influenced by analytical methods.

Key words: Brown carbon, Water-soluble organic carbon, Light absorption coefficient, Mass absorption efficiency, Absorption Ångström exponent

1. 서 론

대기 중 에어로졸 입자는 빛의 흡수 또는 산란을 통해 대기 환경 및 기후변화에 많은 영향을 준다(Li *et al.*, 2022; Lee *et al.*, 2012). 대표적으로 빛을 흡수하 는 입자는 블랙카본(Black Carbon, BC)이며, 석탄, 액 체 화석 연료, 바이오매스의 불완전 연소 등을 통해 대기 중으로 배출된다(Winiger *et al.*, 2015). 또 다른 빛을 흡수하는 입자인 갈색 탄소(Brown Carbon, BrC)는 자외선과 짧은 가시광선 파장에서 빛을 흡수 하는 특성을 가진 유기 입자를 의미한다 (Wu et al., 2016; Laskin et al., 2015). BrC는 바이오매스 연소로 부터 주로 배출되며, 화석 연료 연소와 산림 기원 이 차 생성 등을 통해서도 일부 생성된다 (Yue et al., 2022). BrC에 의한 대기 중 광흡수는 총 대기 광흡수의 약 19%를 차지하는 것으로 알려져 있으며, 전 세 계에서 인위적으로 배출되는 BrC는 연당 약 6.9 Tg으로 보고되었다 (Yan et al., 2018). BrC는 기후 환경뿐 만 아니라 인간의 건강에도 유해하기 때문에 대기 환 경 연구에서 중요한 주제이다 (Liu et al., 2013; Sun et al., 2011).

932

이처럼 BrC에 대한 관심이 증가하고 있지만, 화학 조성과 광흡수 특성 등에 대한 지식은 여전히 제한적 이다. 에어로졸의 복사 강제력에 대한 불확도를 줄이 기 위해서는 BrC의 광흡수 특성을 파악하는 것이 매 우 중요하다(Lin et al., 2017; Laskin et al., 2015). 국내 에서는 aethalometer를 이용해 파장별 에어로졸 광흡 수 계수를 측정한 후 BrC의 광흡수 특성을 산출하는 연구가 주로 수행되었다(Park et al., 2020; Park et al., 2018; Yu et al., 2018). Aethalometer에서 측정된 파장 별 광흡수 계수로부터 babs, BrC를 산출하는 방법은 BC 이외의 무기염 등에 의한 간섭이 존재하기 때문 에 산출된 BrC의 광학적 특성의 불확실성이 존재한 다. 하지만 액화 추출하여 광흡수법을 이용해 측정하 는 방법은 BrC의 광흡수 특성을 선택적으로 측정할 수 있다는 장점이 있다. 또한 수용성 BrC를 측정하는 분광계는 고정된 파장을 측정하는 기존 방법과는 달 리 넓은 파장의 범위에서 파장 분해능이 높은 결과를 얻을 수 있다는 장점이 있다. 하지만 국내에서는 이 러한 방법을 이용해 BrC의 광흡수 특성을 측정한 사 례가 매우 드물다.

본 연구에서는 농지, 소규모 산업시설, 도심 인근에 위치하여 다양한 배출원의 영향을 받는 충청남도 서 산시에 위치한 국립환경과학원 충청권 대기환경연구 소에서 PM_{2.5}를 필터 포집 후 액화 추출하여 BrC의 흡광도를 측정하였다. 또한 동일한 기간에 aethalometer를 이용하여 에어로졸의 파장별 광흡수 계수를 측정한 후 BC의 광흡수 특성을 이용해 BrC의 광흡수 계수를 산출하였다. 이를 통해 측정 방법에 따른 BrC 의 파장별 광흡수 특성을 규명하였다.

2. 실험 방법

2.1 PM_{2.5} 시료 포집

충청남도 서산시에 위치한 충청권 대기환경연구소 (126.49°E, 36.77°N)에서 2020년 12월 15일부터 2021 년 1월 15일까지 PM_{2.5} 시료를 포집하였다. 충청권 대 기환경연구소는 그림 1과 같이 농지로 둘러싸여 있 으며 동쪽으로 약 1 km 거리에 소규모 산업 시설들이 밀집해 있고, 북쪽으로 약 650 m 거리에는 2차선 도 로가 있다. 또한 서쪽으로 약 5 km 거리에는 서산 도 심지역이 위치하고 있어 다양한 대기오염 특성이 혼 합된 장소이다. 측정 기간 중 2021년 1월 3일 오후 10 시부터 1월 4일 오전 3시 사이와 1월 9일부터 1월 11 일까지 오전 9시부터 오후 1시 사이에는 측정 장소 주변에서 소각이 이루어졌다.

PM_{2.5} 입자는 대용량 에어로졸 샘플러(HVS-16, MCZ, Germany)를 이용하여 오전 10시부터 24시간 동안 분당 1130 L로 석영 필터에 연속 포집하였다. 포 집 시 사용된 석영 필터는 500°C에서 12시간 전처리 를 하였다. Field blank filter는 시료 포집 시작일과 종 료 후인 2020년 12월 15일과 2021년 1월 20일에 각각 수집되었다. 일별로 포집된 시료는 동일한 방법으로 전처리된 알루미늄 호일로 감싼 후 테플론 지퍼백에 넣어 -20°C에서 보관하였다.

2.2 유기탄소(Organic Carbon, OC), 원소탄소 (Elemental Carbon, EC) 농도 측정

PM_{2.5} 유기탄소(OC)와 원소탄소(EC) 농도는 준실 시간 열광학적 탄소 분석기(4F-semi continuous field analyzer, Sunset Laboratory, USA)를 이용하여 연속 측정되었다. 대기 시료는 PM_{2.5} 사이클론(SCC 2.354, BGI, USA)을 통해 분당 8 L의 유량으로 흡입된 후

Fig. 1. Sampling site (126.49°E, 36.78°N) in Seosan, Chungcheongnam-do.

parallel carbon denuder를 거쳐 가스상 유기 성분을 제거한 후 필터에 포집되었다. 포집된 시료는 NIOSH (National Institute for Occupational Safety and Health) 온도 프로토콜에 따라 열광학적 투과도법을 이용하여 분석되었다(Bae *et al.*, 2004). 대기 시료는 40분간 포집 후 20분간 분석을 반복하여 수행되었고, 탄화된 OC는 레이저 투과도법을 이용하여 보정하였 다.

2.3 수용성 유기탄소(Water-soluble OC, WSOC) 농도 측정

석영 필터에 포집된 시료는 초순수를 이용하여 액 화 추출한 후 주사기 필터(syringe filter)를 이용해 필 터 이물질과 물에 녹지 않는 성분을 제거하였다. 680°C 연소 촉매 산화 방식인 Total Organic Carbon Analyzer (TOC-L, SHIMADZU, Japan)를 이용하여 추출된 시료 중 Total Organic Carbon (TOC) 농도를 분석한 후 석영 필터의 포집 면적과 포집 부피를 고 려하려 최종적으로 water-soluble OC (WSOC) 농도 를 계산하였다.

시료 중 무기탄소(Inorganic Carbon, IC)와 POC를 제거한 후 TOC를 측정하는 Non-Purgeable Organic Carbon (NPOC)법으로 분석되었으며, 이 방법은 분 석 시간이 짧고 재현성이 좋다는 장점이 있다. NPOC 법은 그림 2와 같이 시료에 pH 3 미만인 산을 첨가하 여 시료 중 IC를 이산화탄소로 전환한 후 깨끗한 공 기를 이용해 제거한다. 최종적으로 NPOC는 백금 촉 매로 680°C까지 가열하여 이산화탄소로 전환시킨 후 비분산적외선 (Non-dispersive infrared, NDIR) 센서 를 이용해 정량한다. Potassium hydrogen phthalate (KHP)를 5가지 농도(0, 1, 2, 5, 10 µg/mL)로 희석하 여 제조한 후 분석장비를 교정하였다.

933

2.4 갈색탄소(Brown carbon, BrC)의 광흡수 계수(b_{abs},BrC) 측정

본 연구에서는 aethalometer와 액화 추출 후 광흡 수법을 이용하여 BrC의 광흡수 계수(b_{abs},BrC)를 각 각 측정하였다.

2.4.1 Aethalometer를 이용한 babs, BrC 측정방법

Dual-spot aethalometer (AE33, Magee Scientific, USA)를 이용하여 7파장(370, 470, 520, 590, 660, 880, 950 nm)에서 광흡수 계수를 측정하였다. Dual-spot aethalometer의 측정 원리는 Drinovec *et al.* (2015)에 자세히 설명되어 있다. PM_{2.5} 입경 분립 장치(SCC1. 829, BGI)를 통해 분당 4L 유량으로 시료를 흡입하였 다. 입경 분립 장치에 의해 황사 등과 같은 조대입자 는 대부분은 제거가 된 후 광흡수 계수 측정이 이루

Fig. 2. Schematic diagram of a total organic carbon (TOC) analyzer.

어졌다.

내부 혼합된 BC 입자는 상대습도의 증가에 따라 광흡수 효율이 증가하는 것으로 보고 되었다(Nessler et al., 2005; Redemann et al., 2001). 충청권 대기환경 연구소에서는 aethalometer로 흡입된 시료를 제습 장 치나 히터를 거치지 않고 측정하기 때문에 상대습도 가 증가함에 따라 광흡수 계수가 과대 측정될 수 있 다. 충청권 대기환경연구소는 겨울철에 실험실 내부 가 24~25°C 항온으로 유지되었다. 전체 측정 기간 동 안 인근 기상청 관측소에서 측정된 온도와 상대습도 를 이용해 장비에 흡입된 시료 중 상대습도를 계산하 면 평균 11.7%이고, 최대 35%를 넘지 않았다. 이로부 터 전체 측정 기간 동안 aethalometer로 측정된 광흡 수 계수는 상대습도에 의한 영향을 거의 받지 않았음 을 유추할 수 있다.

Aethalometer를 이용해 파장별로 측정된 광흡수 계수(b_{abs})는 대기 중 빛을 흡수하는 모든 입자에 의 한 b_{abs} (b_{abs} ,TOT)이다. 무기 입자에 의한 간섭이 없 다고 가정할 때 aethalometer를 이용해 측정되는 b_{abs} 는 아래 식 (1)과 같이 BC에 의한 b_{abs} (b_{abs} ,BC)와 BrC에 의한 b_{abs} (b_{abs} ,BrC)의 합(b_{abs} ,TOT)으로 표현 할 수 있다.

$$b_{abs}, TOT = b_{abs}, BC + b_{abs}, BrC \tag{1}$$

BC의 경우 광흡수 계수의 파장 의존성을 나타내는 absorption Ångström exponent (AAE)가 입자의 형태 및 혼합 상태에 따라 0.7~1.4의 값으로 나타나지만, 순수한 BC에 대하여 일반적으로 1.0으로 알려져 있 다(Olson *et al.*, 2022; Zhang *et al.*, 2020; Moosmueller et al., 2011). 반면에 BrC는 UV와 짧은 가시광선에서 광흡수 특성이 있다 (Park et al., 2020; Yu et al., 2018; Sandradewi et al., 2008). 이러한 두 입자의 광흡수 특 성 차이를 기반으로 하여 aethalometer를 이용해 측 정된 광흡수 계수로 BrC의 광흡수 계수를 산출할 수 있으며, 이러한 방법은 국내외를 포함한 많은 연구에 서 사용되었다 (Olson et al., 2015; Lack and Langridge, 2013; Bahadur et al., 2012; Ajtai et al., 2011; Favez et al., 2009). 따라서 880 nm 및 950 nm 파장에 서 일어나는 광흡수는 모두 BC에 의한 광흡수라고 가정하면, 파장별 b_{abo}BC(λ)는 식 (2)로 계산된다.

$$b_{abs}, BC(\lambda) = \left(\frac{(b_{abs}, TOT(880 \text{ nm}) + b_{abs}, TOT(950 \text{ nm})}{2}\right) \times \left(\frac{\lambda}{\frac{880 \text{ nm} + 950 \text{ nm}}{2}}\right)^{-AAE}$$
(2)

이 식에서 BC의 AAE는 1.0을 적용하였다.

특정 파장(λ)에서 b_{abs},BrC는 아래 식 (3)과 같이 파장별 b_{abs},TOT와 b_{abs},BC의 차로 계산된다.

$$b_{abs}$$
, $BrC(\lambda) = b_{abs}$, $TOT(\lambda) - b_{abs}$, $BC(\lambda)$ (3)

2.4.2 액화 추출 후 광흡수법을 이용한 b_{abs},BrC 측정

2.3장에서 서술한 방법으로 액화 추출한 시료를 liquid waveguide capillary cell (LWCC) (LWCC-3100, World Precision Instruments, USA)과 UV/Vis spectrometer (FLAME-T, Ocean Insight, USA)를 이용하

Fig. 3. Schematic diagram of a liquid waveguide capillary cell coupled with a UV/Vis spectrometer.

여 흡광도 (Absorbance)를 측정하였다. UV/Vis spectrometer는 자외선과 가시광선 파장 영역(230 nm~ 730 nm)에서 흡광도를 측정할 수 있다. LWCC를 사 용하면 광경로를 길게 하여 감도를 높일 수 있다는 장점이 있다. 본 연구에서는 flow cell의 길이가 1000 mm인 LWCC를 사용하였다.

시료의 흡광도를 측정하기 위해 그림 3과 같이 LWCC에 UV-NIR 광원(PX-2, Xenon light source, Ocean Insight, USA)과 UV/Vis spectrometer를 연결 하고, 액체 펌프로 시료를 LWCC에 주입하였다. 액화 추출한 시료와 초순수를 순차적으로 5분간 1.2 mL/ min의 유량으로 주입하였다. UV/Vis spectrometer를 이용해 측정된 파장별 광흡수 스펙트럼은 안정화된 2분간 데이터를 평균하여 식 (4)를 이용하여 시료의 흡광도 (A)를 산출하였다.

$$A(\lambda) = -\log\left(S_{samp}\left(\lambda\right)/S_{Ref}\left(\lambda\right)\right) \tag{4}$$

식 (4)에서 S_{samp} (λ)와 S_{Ref} (λ)는 각각 시료와 초순 수의 광흡수 스펙트럼을 나타낸다. 계산된 A (λ)와 식 (5)를 이용해 파장별 BrC의 b_{abs} (b_{abs},BrC)를 산출하 였다.

$$b_{abs}, BrC(\lambda_1) = (A(\lambda_1) - A(\lambda_2)) \times (V_{water} \times \text{factor})$$
$$\times ln(10) \div (V_{aero} \times L)$$
(5)

이 식에서 A (λ₁) 및 A (λ₂)는 각각 BrC의 빛을 흡수

하는 특성을 가진 파장(λ₁)과 광흡수 특성이 없는 파 장(λ₂)에서 측정된 흡광도를 나타낸다. 본 연구에서 는 선택된 파장(λ)±5 nm 범위를 평균하여 사용하였 다. V_{water}는 액화 추출에 사용된 초순수의 부피(mL) 이고, factor는 포집한 시료의 전체 필터 면적에 대한 사용 필터 면적 비이다. V_{aero}는 필터 포집 시 여과된 공기의 부피(m³)이며, L은 LWCC 내부에 시료와 빛 이 통과하는 flow cell의 길이(mm)이다.

2.5 단위 질량당 광흡수 효율(Mass absorption efficiency, MAE) 및 광흡수 옹스트롬 지수 (absorption Ångström exponent, AAE) 산출

BrC의 단위 질량당 광흡수 효율 (Mass absorption efficiency, MAE)은 아래 식 (6)을 이용해 계산된다.

$$MAE(\lambda) = \frac{b_{abs}(\lambda)}{concentration of WSOC}$$
(6)

Absorption Ångström exponent (AAE)는 광흡수 입자의 파장에 따른 광흡수 의존성을 나타낸다. BC 의 AAE는 1.0으로 알려져 있으며, 짧은 파장에서 광 흡수가 큰 BrC는 파장 의존성이 높으므로 AAE가 1.0 보다 더 큰 것으로 보고되고 있다. 본 연구에서 BrC 의 AAE는 식 (7)을 이용해 산출하였다. 여기서 λ_1 과 λ_2 는 두 기준 파장을 의미한다.

935

$$AAE(\lambda) = \frac{\log\left(\frac{b_{abs}(\lambda_1)}{b_{abs}(\lambda_2)}\right)}{\log\left(\frac{\lambda_1}{\lambda_2}\right)}$$
(7)

3. 결과 및 고찰

3.1 OC, EC 및 WSOC 농도의 시계열 변화

1시간 평균 OC와 EC 농도의 시계열 변화를 그림 4 (a)에 나타내었다. OC 농도는 4일~5일 간격으로 증 가와 감소를 반복하였고, 평균 4.5±3.9 μg C/m³을 나 타내었다. OC 농도는 10 μg C/m³ 이상으로 높은 농도 가 빈번하게 발생하였고, 특히 2021년 1월 1일 오후 10시에는 OC 농도가 24.8 μg C/m³까지 크게 증가하 였다. EC 농도는 OC 농도와 유사한 시계열 변화를 보였고, 평균 1.5±1.2 μg C/m³을 나타내었다. OC/EC 비는 평균 3.1±1.6이었으며, 최소 0.88에서 최대 17.3 까지 증가하였다. OC와 EC 농도의 평균 일변화를 그 림 4 (b)에 나타내었다. OC 농도는 아침 시간(오전 8 시~오전 11시)과 저녁 시간(오후 6시~오전 2시)에 피크가 관찰되었으며, 아침 시간보다는 저녁 시간에 피크가 더 두드러지게 나타났다. 이는 출퇴근 시간에 운행하는 차량의 증가와 겨울철 난방에 의한 영향으 로 추측된다.

그림 5는 전체 관측 기간 동안 일평균 OC와 WSOC 농도의 산포도이다. OC 농도는 1시간 간격으 로 측정 후, WSOC 농도와 비교를 위해 필터 포집 시 간을 참고하여 일평균 농도로 나타내었다. WSOC 농 도와 OC 농도는 결정계수(R²)가 0.85로 매우 양호한 상관관계를 나타냈으며, 이를 통해 WSOC와 OC가 유사한 배출원으로부터 생성된 것을 유추할 수 있다. 측정 기간 동안 WSOC 농도는 평균 1.40±0.55 µg C/ m³로 나타났으며, 12월 21일에 2.3 µg C/m³로 농도가 가장 높았다. 선행 연구 결과에 따르면, 광주 지역 2007년, 2008년, 2009년 겨울철 평균 WSOC 농도는 각각 1.44 (0.28~3.72) µg C/m³, 2.11 (0.17~8.41) µg C/ m³, 3.37 (0.59~10.04) µg C/m³로 보고되었다 (Ko *et al.*, 2013; Park *et al.*, 2010; Park *et al.*, 2007). 또한 대

Fig. 4. (a) Temporal and (b) diurnal variations of organic carbon (OC) and elemental carbon (EC) concentrations at the Seosan site during the entire measurement period.

전 지역 2013년 겨울철 평균 WSOC 농도는 4.07 (1.64~9.91) μg C/m³로 보고되었다(Kim *et al.*, 2015). 본 연구에서 측정된 WSOC 농도는 선행 연구와 비교

Fig. 5. Scatter plot of daily average OC versus water-soluble OC (WSOC) concentrations during the entire measurement period.

해서 상대적으로 낮았다.

본 연구에서 WSOC/OC 농도 비는 평균 0.34±0.10 을 나타냈다. 일반적으로 차량 배출 등에 의한 영향 을 많이 받는 도심 지역은 WSOC/OC 농도 비가 0.3 미만으로 보고되었다(Saarikoski *et al.*, 2008; Huang *et al.*, 2006). 반면에 바이오매스 연소 배출이나 산업 에 의한 영향을 많이 받는 지역은 그보다 높은 0.3~0.4로 보고되었다(Ram *et al.*, 2012; Ram and Sarin, 2010). 광주 지역 2007년, 2008년, 2009년 겨울 철 WSOC/OC 농도 비는 약 0.40, 0.45, 0.40로 보고 되었으며(Ko *et al.*, 2013; Park *et al.*, 2010; Park *et al.*, 2007), 2013년 겨울철 서울지역에서 WSOC/OC 농도 비는 약 0.47로 보고되었다(Choi *et al.*, 2015). 본 연 구에서 얻어진 WSOC/OC 농도 비는 선행 연구와 비 교해서 소폭 낮았고, 바이오매스 연소 배출이나 산업 에 의한 영향을 받은 지역과 유사하였다.

937

3. 2 Aethalometer를 이용해 산출된 b_{abs},BrC의 특성

그림 6(a)는 aethalometer를 이용하여 측정한 b_{abs},

Fig. 6. Time series of light absorption coefficients of (a) total aerosols (b_{abs},TOT) at 370 nm and 880 nm and (b) BC (b_{abs},BC) and BrC (b_{abs},BrC) at 370 nm during the entire measurement period.

938

Parameter	Wavelengths				
	370 nm	470 nm	520 nm	590 nm	660 nm
b _{abs} ,TOT (Mm ⁻¹)	39.5±31.9	25.6±19.8	20.5±15.8	17.1±13.2	14.1±10.8
b _{abs} ,BrC (Mm ⁻¹)	17.0 ± 9.4	7.8 ± 6.6	4.5 ± 3.8	2.9 ± 2.5	1.4 ± 1.3
b _{abs} ,BrC (%)	43.0	30.5	21.7	17.1	10.0

Table 1. Summary of light absorption coefficients of total aerosols (b_{absr} TOT) and BrC (b_{absr} BrC), and contribution of b_{absr} BrC to b_{absr} TOT obtained by an A33 aethalometer.

TOT 시계열 변화이다. BC에 의해서만 광흡수가 일 어난다고 가정한 880 nm 파장과 BrC의 영향이 큰 370 nm 파장을 나타내었으며, 950 nm 파장에서 b_{abs},TOT는 880 nm 파장에서의 b_{abs},TOT와 유사하여 생략하였다. 370 nm와 880 nm 파장에서 b_{abs},TOT는 OC 농도 및 EC 농도의 추이와 유사하게 나타나며, 아침 시간과 저녁 시간에 피크가 관찰되었다. 이 역 시 출퇴근 시간에 운행하는 차량의 증가와 겨울철 난 방에 의한 영향으로 추측된다.

그림 6(b)는 aethalometer를 이용하여 측정한 b_{abs},TOT를 식 (2)와 식 (3)을 이용하여 산출한 370 nm 파장에서 BC와 BrC의 b_{abs} 시계열 변화이다. 파 장에 따른 광흡수 차이가 크지 않았던 12월 23일~24 일에는 다소 차이를 보였지만, b_{abs},BC와 b_{abs},BrC는 대체로 매우 유사한 추이가 나타났다. 또한 370 nm 파장에서 BC와 BrC의 평균 b_{abs}는 각각 22.6±17.2 Mm⁻¹와 17.0±9.4 Mm⁻¹로 BrC의 b_{abs}가 BC의 b_{abs}와 유사한 수준을 나타내며 짧은 파장에서 BrC의 중요 성을 확인할 수 있었다.

Aethalometer를 이용하여 측정한 파장에 따른 평 균 b_{abs},TOT, b_{abs},BC, b_{abs},BrC를 그림 7에 나타내었 고, 이를 요약하여 표 1에 나타내었다. 전체 측정 기 간 동안 370 nm 파장에서 총 b_{abs}에 대한 BrC의 기여 도는 약 43.0%로 높게 나타났고, 470 nm와 520 nm에 서는 각각 약 30.5%, 21.7%로 나타났다. 본 연구에서 b_{abs},TOT의 파장 의존성은 370 nm~950 nm 파장에서 AAE가 1.59로 나타났으며, BrC에 의한 광흡수가 일 어나는 370 nm~590 nm 파장에서 AAE는 3.82로 매 우 높게 산출되었다. 이러한 b_{abs},BC와 b_{abs},BrC의 파

Fig. 7. Average spectral b_{abs} , TOT, b_{abs} , BC, and b_{abs} , BrC in the wavelength range of 370 nm to 950 nm.

장 의존성에 대해 뚜렷하게 나타나는 차이는 많은 선 행 연구들과 유사한 경향을 나타내었다 (Kim *et al.*, 2021; Olson *et al.*, 2015; Saleh *et al.*, 2015; Chakrabarty *et al.*, 2013).

국내에서 aethalometer를 이용해 BrC의 광흡수 특 성을 산출하는 선행 연구 결과를 보면, 광주 지역 2015년 여름철과 겨울철 370 nm 파장에서 BrC의 광 흡수 계수(b_{abs},BrC(370 nm))는 평균 6.6 Mm⁻¹과 19.0 Mm⁻¹로 각각 산출되었다. 동일한 기간 370 nm~ 660 nm 파장에서 광흡수 옹스트롬 지수(Absorption Ångström Exponent, AAE)는 평균 4.0과 4.4로 각각 산출되었다(Park *et al.*, 2018). 충남 서산 지역 2020년 겨울철 평균 b_{abs},BrC(370 nm)와 AAE(370~660 nm) 는 각각 32 Mm⁻¹, 4.2로 나타났다(Son *et al.*, 2021). 중국 히난성 지역의 경우 2018년~2019년 겨울철에

Fig. 8. Time series of b_{abs},BrC (370 nm) measured by the LWCC-UV/Vis spectrometer and WSOC concentration.

평균 b_{abs},BrC (370 nm), AAE (370~520 nm)와 370 nm 파장에서 단위 질량당 광흡수 효율 (MAE (370 nm))은 각각 59.6 Mm⁻¹, 5.22, 4.33 m² g⁻¹으로 보고되 었다(Zhang *et al.*, 2021).

3.3 LWCC-UV/Vis spectrometer를 이용해 측정된 b_{abs},BrC의 특성

일평균 WSOC 농도와 LWCC-UV/Vis spectrometer를 이용하여 측정한 370 nm 파장에서 BrC에 의한 b_{abs} 의 시계열 변화를 그림 8에 나타내었다. 식 (5)에 서 λ_1 은 370 nm, λ_2 은 700 nm 파장에서 측정한 값을 사용하였다. 그림 8에 보이는 바와 같이 WSOC 농도 와 b_{abs} ,BrC (370 nm)가 매우 유사한 시계열 변화를 보였다. b_{abs} ,BrC (370 nm)는 0.45 Mm⁻¹에서 2.23 Mm⁻¹까지 다양했으며, 평균 1.4±0.6 Mm⁻¹으로 나 타났다.

측정 전체 기간 동안 LWCC-UV/Vis spectrometer 를 이용해 측정한 310 nm부터 500 nm까지 파장별 평 균 b_{abs} ,BrC를 그림 9에 나타내었다. 파장이 짧아짐에 따라 b_{abs} ,BrC가 급격히 증가하는 경향을 보였고, 이 로부터 BrC가 짧은 파장에서 높은 광흡수 특성을 가 지는 것을 확인할 수 있었다. 310 nm와 500 nm 파장 에서 BrC에 의한 평균 b_{abs} 는 각각 3.75 ± 1.39 Mm⁻¹ 와 0.12 ± 0.04 Mm⁻¹로 측정되었다. 310 nm에서 측정 된 b_{abs} 가 500 nm보다 약 30.4배 높게 산출되었고, 이 로부터 BrC의 b_{abs} 가 파장 의존성이 매우 큰 것을 확 인할 수 있었다.

939

Fig. 9. Average spectral b_{abs} , BrC from 310 nm to 500 nm measured by the LWCC-UV/Vis spectrometer.

3.4 측정 방법에 따른 babs, BrC 비교

그림 10은 aethalometer와 LWCC-UV/Vis spectrometer를 이용하여 측정한 b_{abs} ,BrC 사이의 산포도 이다. 370 nm와 470 nm 파장에서 R^2 는 각각 0.89와 0.72로 좋은 상관관계를 보였고, 파장이 짧을수록 상 관관계가 증가하는 것을 확인할 수 있었다. 전체 측 정 기간 동안 aethalometer와 LWCC-UV/Vis spectrometer를 이용하여 측정한 370 nm 파장에서 b_{abs} , BrC는 각각 17.0±9.4 Mm⁻¹, 1.4±0.6 Mm⁻¹로 aethalometer를 이용한 b_{abs} ,BrC가 약 12.3배 큰 것을 확인 할 수 있었다.

Aethalometer와 LWCC-UV/Vis spectrometer를 이 용해 측정한 BrC의 파장별 b_{abs}를 그림 11에 비교하

Fig. 10. Scatter plot of b_{absr} BrC retrieved by the aethalometer versus those measured by the LWCC-UV/Vis spectrometer. Red and black circles represent b_{absr} BrC at 370 nm and 470 nm wavelengths, respectively.

Fig. 11. Average spectral b_{abs} , BrC retrieved by the aethalometer and the LWCC-UV/Vis spectrometer during the entire measurement period.

여 나타내었다. LWCC-UV/Vis spectrometer를 이용 하면 그림 9와 같이 조밀한 파장 영역에서 b_{abs}를 측 정할 수 있지만, aethalometer와 비교를 위해 4개 파 장만 선별하여 나타내었다. b_{abs},BrC의 파장 의존성을 나타내는 AAE는 370 nm~590 nm 파장에서 aethalometer와 LWCC-UV/Vis spectrometer가 각각 3.82 와 8.47로 산출되었다. LWCC-UV/Vis spectrometer 를 이용해 산출한 BrC의 b_{abs} 파장 의존성이 aethalometer에 비해 약 2.2배 큰 것을 확인할 수 있었다.

Park and Yu (2016)는 본 연구의 LWCC-UV/Vis spectrometer를 이용한 방법과 유사한 방법으로 바이 오매스 연소에 대한 실험실 챔버 연구를 수행하였다. 볏짚, 솔잎, 참깨 줄기의 연소에 대해 300 nm~400 nm 파장에서 WSOC의 AAE가 약 8.3, 7.4, 8.0으로 보 고되었으며, 이 값은 LWCC-UV/Vis spectrometer를 이용한 본 연구 결과와 매우 유사하였다.

3.5 BrC의 단위 질량당 광흡수 효율(MAE) 및 광흡수 옹스트롬 지수(AAE) 특성 비교

Aethalometer와 LWCC-UV/Vis spectrometer를 이 용하여 산출한 370 nm 파장에서 BrC의 MAE의 일평 균 변화를 그림 12에 나타내었다. 두 측정 방법으로 산출된 MAE (370 nm)는 유사한 시계열 변화를 나타 내었다. 전체 측정 기간 동안 370 nm 파장에서 aethalometer와 LWCC-UV/Vis spectrometer를 이용해 산 출한 MAE는 각각 11.6±3.2 m² g⁻¹, 1.0±0.2 m² g⁻¹으 로, aethalometer를 이용해 산출한 MAE가 약 11.6배 높았다. 470 nm 파장에서 aethalometer와 LWCC-UV/Vis spectrometer를 이용해 산출한 MAE는 각각 5.36±1.21 m² g⁻¹, 0.17±0.04 m² g⁻¹로 aethalometer 를 이용해 산출한 MAE가 약 32.4배 높았다.

액화 추출 후 UV/Vis spectrometer를 이용해 산출 한 BrC의 MAE와 AAE를 다른 연구 결과들과 비교하 여 그림 13에 나타내었다(Liu *et al.*, 2019; Yan *et al.*, 2017; Cheng *et al.*, 2016, 2011; Srinivas *et al.*, 2016; Yan *et al.*, 2015; Du *et al.*, 2014; Kirillova *et al.*, 2014; Srinivas, 2014; Zhang *et al.*, 2013; Hecobian *et al.*, 2010). 비교를 위하여 다른 논문들과 동일하게 365 nm 파장에서 MAE를 사용하였고, 350 nm~400 nm 파장의 범위에서 얻어진 AAE를 사용하였다. 본 연구 에서 산출된 MAE (365 nm)는 0.88±0.55 m² g⁻¹으로

941

Fig. 12. Time series of mass absorption efficiency (MAE) of BrC at 370 nm wavelength obtained by the aethalometer and the LWCC-UV/Vis spectrometer.

Fig. 13. Comparison of mean absorption Ångström exponent (AAE) and MAE of BrC at 365 nm.

겨울철 베이징 지역(Liu *et al.*, 2019)보다 낮았고, 작 물 수확기 직후인 인도 지역(Srinivas and Sarin, 2014)보다 다소 높았다. 또한 AAE는 7.17±0.26으로 겨울철 베이징 지역(Cheng *et al.*, 2016)과 비슷한 수 준으로 나타났으며, MAE(365 nm)와 AAE 모두 기존 여러 연구 결과들과 비슷하였다.

본 연구에서는 액화 추출하여 UV/Vis spectrometer를 이용해 측정한 b_{abs},BrC, MAE와 AAE가 aethalometer를 이용하여 산출한 값들과 큰 차이가 있음을 확인하였다. 이러한 차이는 aethalometer로 측정한 b_{abs},BrC의 불확실성을 하나의 원인으로 설명될 수 있다. 이 방법으로 산출된 babs.BrC는 880 nm 및 950 nm 파장에서 일어나는 광흡수는 모두 BC에 의한 광 흡수라는 가정과 BC의 AAE가 1.0이라는 가정을 기 반으로 한 추정치이다. 하지만 2.4.1장에서 서술했듯 이 BC의 AAE는 입자의 형태 및 혼합 상태에 따라 변 동 가능성이 있다. BC가 다른 유기나 무기물질로 코 팅이 되면 광흡수 효율이 2배 이상 증가한다고 알려 져 있다 (Petzold *et al.*, 1997). 액화 추출 후 UV/Vis spectrometer로 측정하는 경우 BrC의 광흡수 특성만 측정되지만, aethalometer의 경우 식 8과 같이 UV 영 역에서 babs.TOT는 babs.BC, babs.BC 뿐만 아니라 BC 가 유기나 무기 물질로 코팅되어 광흡수량이 증대되 는 양(b_{abs},BC_{mixing})도 포함되게 된다. 이로부터 식 8 과 같이 aethalometer로 b_{abs},BrC를 산정할 때 불확실 성이 존재한다.

942

 b_{abs} , TOT = b_{abs} , BC + b_{abs} , BC $_{mixing}$ + b_{abs} , BrC (8)

또한 aethalometer로 측정한 b_{abs},BrC는 긴 파장에 서 BrC에 의한 잠재적인 광흡수 및 BC, BrC 이외에 광흡수를 하는 에어로졸의 간섭으로 인한 불확도에 취약하다(Wang *et al.*, 2022; Corbin *et al.*, 2019; Lack and Langridge, 2013).

또 다른 원인으로는 불수용성 BrC의 영향으로 액 화 추출 후 UV/Vis spectrometer로 측정한 b_{abs},BrC가 과소 산정될 수 있다. 이 방법은 무기염이나 BC의 영 향을 받지 않고 파장 분해능이 높다는 장점이 있다. 하지만 aethalometer의 경우 수용성과 불수용성 BrC 도 모두 측정하지만, 액화 추출 후 UV/Vis spectrometer를 이용하는 방법은 수용성 BrC의 광흡수 계수만 측정한다. 선행 연구에서는 바이오매스와 화석 연료 의 연소로부터 빛을 흡수하는 성질을 가지는 불수용 성 고분자량 다환방향족탄화수소화합물이 배출된다 고 보고되었다 (Zhang *et al.*, 2013; Chen and Bond, 2010; Sun *et al.*, 2007). 따라서 액화 추출 후 UV/Vis spectrometer로 측정한 b_{abs},BrC는 빛을 흡수하는 불 수용성 탄화수소화합물에 의해 상대적으로 낮게 측 정될 수 있음을 유추할 수 있다.

BrC는 다양하고 복잡한 화학 조성 등으로 인한 불 확도로 인해 모든 BrC 종을 구별하거나, 분자 구조를 기반으로 BrC로 인한 광흡수를 예측하기에 어려움 이 있다(Sun et al., 2007). 따라서 최근 연구들은 복합 혼합물의 평균 광흡수를 설명하는 데 중점을 두고 있 다(Wang et al., 2022). 본 연구에서 aethalometer로 측 정한 b_{abs},BrC과 UV/Vis spectrometer로 측정한 b_{abs}, BrC 모두 불확도가 존재하며, 추후 연구를 통해 빛을 흡수하는 특성을 가진 불수용성 유기 입자 등에 대한 정량 및 광흡수 효율을 정량할 필요가 있다.

4. 결 론

본 연구에서는 충청남도 서산시에 위치한 충청권 대기환경연구소에서 2020년 12월 15일부터 2021년 1 월 15일까지 약 한 달간 측정 방법에 따른 BrC의 광 학 특성을 비교하였다. 측정 기간 중 OC와 EC의 농 도는 아침과 저녁 시간에 증가하는 경향을 나타냈으 며, 이러한 경향성은 아침보다는 저녁 시간에 더 뚜 렷하게 나타났다. 특히 측정 장소 주변에서 소각이 이루어진 기간에 농도가 급격히 증가하는 것을 확인 할 수 있었다. WSOC의 농도는 평균 1.40±0.55 μgC/ m³이었으며, WSOC/OC 비율은 평균 0.34로 전체 관 측 기간 동안 유사한 값이 유지되었다.

두 측정 방법에서 babs,BrC (370 nm)는 R²가 0.89로 높은 상관관계가 나타났다. 하지만 aethalometer 와 LWCC-UV/Vis spectrometer를 이용하여 산출한 평균 babes,BrC는 각각 17.0±9.4 Mm⁻¹, 1.4±0.6 Mm⁻¹ 으로 aethalometer가 약 12배 이상 크게 나타났다. 광 흡수 특성 또한 측정 방법에 따라 큰 차이를 보였다. Aethalometer와 LWCC-UV/Vis spectrometer를 이용 하여 산출한 370 nm 파장에서 MAE는 각각 11.6± 3.2 m² g⁻¹, 1.0±0.2 m² g⁻¹으로 aethalometer를 이용 해 산출한 MAE가 약 11.6배 높았다. 반면, 370 nm~ 590 nm 파장에서 aethalometer와 LWCC-UV/Vis spectrometer를 이용해 산출한 AAE는 각각 3.82와 8.47로 LWCC-UV/Vis spectrometer가 약 2.2배 높게 나타났다. LWCC-UV/Vis spectrometer를 이용해 산 출한 365 nm에서 MAE와 AAE는 다른 연구 결과들 과 비슷한 수준을 나타내었다.

측정 방법에 따른 b_{abs},BrC 및 BrC의 광흡수 특성 의 차이는 aethalometer를 이용하여 측정한 b_{abs},BrC 가 에어로졸의 혼합 상태 등으로 인한 불확실성으로 유추할 수 있다. 또한, 수용성 BrC 뿐만 아니라 빛을 흡수하는 성질을 가진 불수용성 BrC의 영향으로 액 화 추출 후 UV/Vis spectrometer로 측정한 b_{abs},BrC가 과소 측정될 수 있음을 유추할 수 있다. 따라서 추후 연구를 통해 빛을 흡수하는 특성을 가진 불수용성 유 기 입자 등에 대한 정량 및 광흡수 효율을 정량할 필 요가 있다.

감사의 글

이 연구는 한국표준과학연구원 기본 사업인 "2차 생성 질소산화물 측정표준확립 (23011153)"의 연구 비 지원을 받아 수행되었습니다.

References

- Ajtai, T., Filep, Á., Utry, N., Schnaiter, M., Linke, C., Bozóki, Z., Szábo, G., Leisner, T. (2011) Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an Aethalometer under sub-urban wintry conditions, Journal of Aerosol Science, 42(12), 859-866. https://doi.org/10.1016/j.jaerosci.2011. 07.008
- Bae, M.S., Schauer, J.J., DeMinter, J.T., Turner, J.R., Smith, D., Cary, R.A. (2004) Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method, Journal of Atmospheric Environment, 38(18), 2885-2893. https://doi.org/10. 1016/j.atmosenv.2004.02.027
- Bahadur, R., Praveen, P.S., Xu, Y., Ramanathan, V. (2012) Solar absorption by elemental and brown carbon determined from spectral observations, Proceedings of the National Academy of Sciences, 109(43), 17366-17371. https://doi.org/10.1073/pnas.1205910109
- Chakrabarty, R.K., Arnold, I.J., Francisco, D.M., Hatchett, B., Hosseinpour, F., Loria, M., Pokharel, A., Woody, B.M. (2013) Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals, Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 25-30. https://doi.org/10. 1016/j.jqsrt.2012.12.011
- Chen, Y., Bond, T.C. (2010) Light absorption by organic carbon from wood combustion, Journal of Atmospheric Chemistry and Physics, 10(4), 1773-1787. https:// doi.org/10.5194/acp-10-1773-2010
- Cheng, Y., He, K.B., Zheng, M., Duan, F.K., Du, Z.Y., Ma, Y.L., Tan, J.H., Yang, F.M., Liu, J.M., Zhang, X.L., Weber, R.J., Ber-

gin, M.H., Russell, A.G. (2011) Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China, Journal of Atmospheric Chemistry and Physics, 11(22), 11497-11510. https://doi.org/10.5194/acp-11-11497-2011

- Cheng, Y., He, K.B., Du, Z.Y., Engling, G., Liu, J.M., Ma, Y.L., Zheng, M., Weber, R.J. (2016) The characteristics of brown carbon aerosol during winter in Beijing, Journal of Atmospheric Environment, 127, 355-364. https://doi.org/10.1016/j.atmosenv.2015.12.035
- Choi, N., Lee, J., Jung, C., Lee, S., Yi, S., Kim, Y. (2015) Concentrations and Characteristics of Carbonaceous Compounds in PM₁₀ over Seoul: Measurement between 2006 and 2007, Journal of Korean Society for Atmospheric Environment, 31(4), 345-355, (in Korean with English abstract). https://doi.org/10.5572/KOSAE. 2015.31.4.345
- Corbin, J.C., Czech, H., Massabò, D., de Mongeot, F.B., Jakobi, G., Liu, F., Lobo, P., Mennucci, C., Mensah, A.A., Orasche, J., Pieber, S.M., Prévôt, A.S.H., Stengel, B., Tay, L.L., Zanatta, M., Zimmermann, R., Haddad, I.E., Gysel, M. (2019) Infrared-absorbing carbonaceous tar can dominate light absorption by marineengine exhaust, Journal of Npj Climate and Atmospheric Science, 2(1), 12. https://doi.org/10.1038/ s41612-019-0069-5
- Drinovec, L., Močnik, G., Zotter, P., Prévôt, A.S.H., Ruckstuhl, C., Coz, E., Rupakheti, J., Sciare, J., Müller, T., Wiedensohler, A., Hansen, A.D.A. (2015) The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Journal of Atmospheric Measurement Techniques, 8(5), 1965-1979. https://doi.org/10.5194/ amt-8-1965-2015
- Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., Weber, R. (2014) A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties, Journal of Atmospheric Environment, 89, 235-241. https://doi.org/10.1016/j. atmosenv.2014.02.022
- Favez, O., Alfaro, S.C., Sciare, J., Cachier, H., Abdelwahab, M.M. (2009) Ambient measurements of light-absorption by agricultural waste burning organic aerosols, Journal of Aerosol Science, 40(7), 613-620. https:// doi.org/10.1016/j.jaerosci.2009.04.002
- Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E.S., Weber, R.J. (2010) Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern

943

United States, Journal of Atmospheric Chemistry and Physics, 10(13), 5965-5977. https://doi.org/10. 5194/acp-10-5965-2010

Huang, X.F., Yu, J.Z., He, L.Y., Yuan, Z. (2006) Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms, Journal of Geophysical Research: Atmospheres, 111(D22). https://doi. org/10.1029/2006JD007408

944

- Kim, H., Jung, J., Lee, J., Lee, S. (2015) Seasonal characteristics of organic carbon and elemental carbon in PM_{2.5} in Daejeon, Journal of Korean Society for Atmospheric Environment, 31, 28-70, (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2015.31. 1.028
- Kim, S.W., Cho, C., Rupakheti, M. (2021) Estimating contributions of black and brown carbon to solar absorption from aethalometer and AERONET measurements in the highly polluted Kathmandu Valley, Nepal, Atmospheric Research, 247, 105164. https://doi. org/10.1016/j.atmosres.2020.105164
- Kirillova, E.N., Andersson, A., Tiwari, S., Srivastava, A.K., Bisht, D. S., Gustafsson, Ö. (2014) Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties, Journal of Geophysical Research: Atmospheres, 119(6), 3476-3485. https://doi.org/10.1002/ 2013JD020041
- Ko, J., Bae, M., Park, S. (2013) Investigation of Chemical Characteristics of PM_{2.5} during Winter in Gwangju, Particle and Aerosol Research, 9(2), 89-102, (in Korean with English abstract). https://doi.org/10.11629/jpaar. 2013.9.2.089
- Lack, D.A., Langridge, J.M. (2013) On the attribution of black and brown carbon light absorption using the Ångström exponent, Atmospheric Chemistry and Physics, 13(20), 10535-10543. https://doi.org/10.5194/ acp-13-10535-2013
- Laskin, A., Laskin, J., Nizkorodov, S.A. (2015) Chemistry of atmospheric brown carbon, Chemical Reviews, 115(10), 4335-4382. https://doi.org/10.1021/cr5006167
- Lee, S., Yoon, S.C., Kim, S.W., Kim, Y.P., Ghim, Y.S., Kim, J.H., Kang, C.H., Kim, Y.J., Chang, L.S., Lee, S.J. (2012) Spectral dependency of light scattering/absorption and hygroscopicity of pollution and dust aerosols in Northeast Asia, Atmospheric Environment, 50, 246-254. https://doi.org/10.1016/j.atmosenv.2011.12. 026
- Li, J., Carlson, B.E., Yung, Y.L., Lv, D., Hansen, J., Penner, J.E.,

Penner, J.E., Liao, H., Ramaswamy, V., Kahn, R.A., Zhang, P., Dubovik, O., Ding, A., Lacis, A.A., Zhang, L., Dong, Y. (2022) Scattering and absorbing aerosols in the climate system, Nature Reviews Earth & Environment, 3(6), 363-379. https://doi.org/10.1038/ s43017-022-00296-7

- Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S.A., Laskin, J., Laskin, A. (2017) Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event, Environmental Science & Technology, 51(20), 11561-11570. https://doi.org/10. 1021/acs.est.7b02276
- Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., Weber, R.J. (2013) Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption, Atmospheric Chemistry and Physics, 13(24), 12389-12404. https://doi.org/10.5194/acp-13-12389-2013
- Liu, X., Zhang, Y.L., Peng, Y., Xu, L., Zhu, C., Cao, F., Zhai, X., Haque, M.M., Yang, C., Chang, Y., Huang, T., Xu, Z., Bao, M., Zhang, W., Fan, M., Lee, X. (2019) Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution, Atmospheric Chemistry and Physics, 19(17), 11213-11233. https://doi.org/ 10.5194/acp-19-11213-2019
- Lukács, H., Gelencsér, A., Hammer, S., Puxbaum, H., Pio, C., Legrand, M., Giebl, A.K., Handler, M., Limbeck, A., Simpson, D., Preunkert, S. (2007) Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe, Journal of Geophysical Research: Atmospheres, 112(D23). https://doi.org/10.1029/2006JD008 151
- Moosmüller, H., Chakrabarty, R.K., Ehlers, K.M., Arnott, W.P. (2011) Absorption Ångström coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles, Atmospheric Chemistry and Physics, 11(3), 1217-1225. https://doi.org/10.5194/ acp-11-1217-2011
- Olson, M.R., Victoria Garcia, M., Robinson, M.A., Van Rooy, P., Dietenberger, M.A., Bergin, M., Schauer, J.J. (2015) Investigation of black and brown carbon multiplewavelength-dependent light absorption from biomass and fossil fuel combustion source emissions, Journal of Geophysical Research: Atmospheres, 120(13), 6682-6697. https://doi.org/10.1002/2014 JD022970

- Olson, M.R., Yuqin, W., de Foy, B., Li, Z., Bergin, M.H., Zhang, Y., Schauer, J.J. (2022) Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport, Science of The Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021. 150871
- Park, S.S., Hur, J.Y., Cho, S.Y., Kim, S.J., Kim, Y.J. (2007) Characteristics of organic carbon species in atmospheric aerosol particles at a Gwangju area during summer and winter, Korean Journal of Atmospheric Environment, 23(6), 675-688, (in Korean with English abstract).
- Park, S.S., Cho, S.Y., Kim, S.J. (2010) Chemical characteristics of water soluble components in fine particulate matter at a Gwangju area, Korean Chemical Engineering Research, 48(1), 20-26, (in Korean with English abstract).
- Park, S.S., Yu, J. (2016) Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments, Atmospheric Environment, 136, 114-122. https://doi. org/10.1016/j.atmosenv.2016.04.022
- Park, S.S., Son, S-C. (2017) Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea, Atmospheric Research, 185, 73-83. https://doi.org/10.1016/ j.atmosres.2016.11.005
- Park, S., Son, S.C., Lee, S. (2018) Characterization, sources, and light absorption of fine organic aerosols during summer and winter at an urban site, Atmospheric Research, 213, 370-380. https://doi.org/10.1016/ j.atmosres.2018.06.017
- Park, S.S., Lee, G.Y., Lee, M.D. (2020) Light absorption of PM_{2.5} observed during fall at a Seosan site in Chungchoeng province, Journal of Korean Society for Atmospheric Environment, 36(3), 404-413, (in Korean with English abstract).
- Petzold, A., Kopp, C., Niessner, R. (1997) The dependence of the specific attenuation cross section on black carbon mass fraction and particle size, Atmospheric Environment, 31, 661-672. https://doi.org/10.1016/ S1352-2310(96)00245-2
- Ram, K., Sarin, M.M. (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India, Journal of Aerosol Science, 41(1), 88-98. https://doi.org/10.1016/j.jaerosci.2009.11.004
- Ram, K., Sarin, M.M., Tripathi, S.N. (2012) Temporal trends in atmospheric PM_{2.5}, PM₁₀, elemental carbon, organic

carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain, Environmental Science & Technology, 46(2), 686-695. https://doi.org/10.1021/ es202857w

- Redemann, J., Russell, P.B., Hamill, P. (2001) Dependence of aerosol light absorption and single-scattering albedo on ambient relative humidity for sulfate aerosols with black carbon cores, Journal of Geophysical Research, 106(D21), 27485-27495. https://doi.org/ 10.1029/2001JD900231
- Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.M., Hillamo, R. (2008) Sources of organic carbon in fine particulate matter in northern European urban air, Atmospheric Chemistry and Physics, 8(20), 6281-6295. https://doi.org/ 10.5194/acp-8-6281-2008
- Sandradewi, J., Prévôt, A.S., Szidat, S., Perron, N., Alfarra, M.R., Lanz, V.A., Weingartner, E., Baltensperger, U.R.S. (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environmental Science & Technology, 42(9), 3316-3323. https://doi.org/10.1021/es702 253m
- Saleh, R., Marks, M., Heo, J., Adams, P.J., Donahue, N.M., Robinson, A.L. (2015) Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions, Journal of Geophysical Research: Atmospheres, 120(19), 10-285. https://doi.org/10.1002/ 2015JD023697
- Son, S.-C., Ju, S.-R., Lee, K.-Y., Park, S.-S. (2021) Characteristics of Chemical and Light Absorption of PM_{2.5} during Winter at a Seosan Site in Chungchoengnam-do. Journal of Korean Society for Atmospheric Environment, 37(5), 2383-5346, (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2021.37.5.759
- Srinivas, B., Sarin, M.M. (2014) Brown carbon in atmospheric outflow from the Indo-Gangetic Plain: Mass absorption efficiency and temporal variability, Atmospheric Environment, 89, 835-843. https://doi.org/10.1016/ j.atmosenv.2014.03.030
- Srinivas, B., Rastogi, N., Sarin, M.M., Singh, A., Singh, D. (2016) Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain, Atmospheric Environment, 125, 360-370. https:// doi.org/10.1016/j.atmosenv.2015.07.017

Sun, H., Biedermann, L., Bond, T.C. (2007) Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol, Geophysical Research Letters, 34(17). https://doi.org/10.1029/2007GL029797

946

- Sun, Y., Zhang, Q., Zheng, M., Ding, X., Edgerton, E.S., Wang, X. (2011) Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM_{2.5}) with high-resolution aerosol mass spectrometry and GC-MS, Environmental Science & Technology, 45(11), 4854-4861. https://doi.org/10. 1021/es200162h
- Yan, C., Zheng, M., Sullivan, A.P., Bosch, C., Desyaterik, Y., Andersson, A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., Collett Jr, J.L. (2015) Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions, Atmospheric Environment, 121, 4-12. https://doi. org/10.1016/j.atmosenv.2015.05.005
- Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., Sullivan, A.P., Collett, J.L., Zhao, B., Wang, S., He, K., Gustafsson, Ö. (2017) Important fossil source contribution to brown carbon in Beijing during winter, Scientific reports, 7(1), 1-10. https://doi.org/10.1038/ srep43182
- Yan, J., Wang, X., Gong, P., Wang, C., Cong, Z. (2018) Review of brown carbon aerosols: Recent progress and perspectives, Science of the Total Environment, 634, 1475-1485. https://doi.org/10.1016/j.scitotenv.2018. 04.083
- Yu, G.H., Yu, J.M., Park, S.S. (2018) Estimation of light absorption by brown carbon particles using multi-wavelength dual-spot aethalometer, Journal of Korean Society for Atmospheric Environment, 34(2), 207-222, (in Korean with English abstract). https://doi. org/10.5572/KOSAE.2018.34.2.207
- Yue, S., Zhu, J., Chen, S., Xie, Q., Li, W., Li, L., Ren, H., Su, S., Li, P., Ma, H., Fan, Y., Cheng, B., Wu, L., Deng, J., Hu, W., Ren, L., Wei, L., Zhao, W., Tian, Y., Pan, X., Sun, Y., Wang, Z., Wu, F., Liu, C., Su, H., Penner, J., Pöschl, U., Andreae, M., Cheng, Y., Fu, P. (2022) Brown carbon from biomass burning imposes strong circum-Arctic warming, One Earth, 5(3), 293-304. https://doi. org/10.1016/j.oneear.2022.02.006
- Wang, Q., Zhou, Y., Ma, N., Zhu, Y., Zhao, X., Zhu, S., Tao, J., Hong, J., Wu, W., Cheng, Y., Su, H. (2022) Review of brown carbon aerosols in China: pollution level, optical properties, and emissions, Journal of Geophysical Research: Atmospheres, 127(16), e2021JD 035473. https://doi.org/10.1029/2021JD035473
- Winiger, P., Andersson, A., Yttri, K. E., Tunved, P., Gustafsson, O.

(2015) Isotope-based source apportionment of EC aerosol particles during winter high-pollution events at the Zeppelin Observatory, Svalbard, Environmental Science & Technology, 49(19), 11959-11966. https://doi.org/10.1021/acs.est.5b02644

- Wu, G.M., Cong, Z.Y., Kang, S.C., Kawamura, K., Fu, P.Q., Zhang, Y.L., Wan, X., Gao, S.P., Liu, B. (2016) Brown carbon in the cryosphere: Current knowledge and perspective, Advances in Climate Change Research, 7(1-2), 82-89. https://doi.org/10.1016/j.accre.2016.06.002
- Zhang, X., Lin, Y.H., Surratt, J.D., Weber, R.J. (2013) Sources, composition and absorption Ångstrom exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin, Environmental Science & Technology, 47(8), 3685-3693. https://doi. org/10.1021/es305047b
- Zhang, X., Mao, M., Yin, Y., Tang, S. (2020) The absorption Ångstrom exponent of black carbon with brown coatings: effects of aerosol microphysics and parameterization, Atmospheric Chemistry and Physics, 20(16), 9701-9711. https://doi.org/10.5194/acp-20-9701-2020
- Zhang, W., Wang, W., Li, J., Ma, S., Lian, C., Li, K., Shi, B., Liu, M., Li, Y., Wang, Q., Sun, Y., Tong, S., Ge, M. (2021) Light absorption properties and potential sources of brown carbon in Fenwei Plain during winter 2018-2019, Journal of Environmental Sciences, 102, 53-63, https://doi.org/10.1016/j.jes.2020. 09.007

Authors Information

- 이혜연(충남대학교 환경공학과 석사과정) (yeonii530@kriss.re.kr)
- 옥수민(충남대학교 환경공학과 석사과정) (suumin98@kriss.re.kr)
- 김나은(전북대학교 지구환경과학과 석사과정) (skdms5924@naver.com)
- 이광열(국립환경과학원 기후대기연구부 대기환경연구과 환경연구사)(kylee21@korea.kr)
- 정민혜(국립환경과학원 기후대기연구부 대기환경연구과 전문연구원)(jeong1469@korea.kr)
- 신혜정(국립환경과학원 기후대기연구부 대기환경연구과 환경연구관)(shjoung@korea.kr)
- 양재환(충남대학교 환경공학과 교수(부교수)) (yjh98@cnu.ac.kr)
- 정진상(한국표준과학연구원)가스분석표준그룹 책임연구원) (jsjung@kriss.re.kr)