Journal of Korean Society for Atmospheric Environment Vol. 38, No. 3, June 2022, pp. 437-450 https://doi.org/10.5572/KOSAE.2022.38.3.437 p-ISSN 1598-7132, e-ISSN 2383-5346

논 문

수도권 교외지역 극미세먼지 화학적 특성 및 산화잠재력 연구 Chemical Characteristics and Oxidation Potential of PM_{1.0} at a Suburban Location in Metropolitan Area

송명기, 박진수¹⁾, 김민성, 최진수¹⁾, 오세호, 최서영, 유근혜, 이태형²⁾, 배민석* 국립목포대학교 환경공학과, ¹⁾국립환경과학원 기후대기연구부 대기환경연구과, ²⁾한국외국어대학교 환경학과

Myoung-Ki Song, Jinsoo Park¹⁾, Minsung Kim, Jinsoo Choi¹⁾, Sea-Ho Oh, Seoyeong Choe, Geun-Hye Yu, Tae Hyoung Lee²⁾, Min-Suk Bae*

Department of Environmental Engineering, Mokpo National University,

Muan, Republic of Korea

¹⁾Climate and Air Quality Research Department, Air Quality Research Division,

National Institute of Environmental Research, Incheon, Republic of Korea

²⁾Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea

접수일 2022년 5월 10일 수정일 2022년 6월 2일 채택일 2022년 6월 2일

Received 10 May 2022 Revised 2 June 2022 Accepted 2 June 2022

*Corresponding author Tel : +82-(0)61-450-2485 E-mail : minsbae@mnu.ac.kr

Abstract Scientific analyses were carried out to investigate the characteristics of both ultra-fine ($PM_{1,0}$) and fine particulate matters ($PM_{2,5}$) based on chemical speciation collected at National Institute of Environmental Research in Incheon, Repulic of Korea. In this study, $PM_{1,0}$ and $PM_{2,5}$ mass were monitored using two betaray instruments simultaneously. Organic carbon, elemental carbon, water soluble ionic compounds, and polycyclic aromatic hydrocarbons were analyzed using dithiothreitol were investigated to compare the level of toxicities in $PM_{1,0}$ and $PM_{2,5}$. As a result, although characteristics of major chemical compounds related to toxic compounds. This result will be able to investigate the health studies and polycy strategies associated with $PM_{1,0}$.

Key words: DTT-OP, ROS, Toxicity, PM

1. 배 경

대기 중에 존재하는 미세 입자는 호흡기를 통해 인 체에 유입된 후 다양한 세포조직에 염증을 유발하여 호흡기 질환, 심혈관 질환 및 퇴행성 질환 등을 유발 하여 인체 건강에 악영향을 미친다(Bates *et al.*, 2019; Abrams *et al.*, 2017; Cesaroni *et al.*, 2014). PM₁₀이 10 µg/m³ 증가할 경우 호흡 사망률은 0.58% 증가하는 반 면, PM_{2.5}가 동일 농도로 증가할 경우 질환 발병률은 2.07%로 상대적으로 높게 증가한다(Shou *et al.*, 2019; Nemery et al., 2001). 미세 입자는 인체 위해성 측면에 서 입자를 구성하는 성분 및 크기에 따라 위해성이 달 라진다 (Chen et al., 2020; Zhao et al., 2017; Tie et al., 2009). 미세 입자에 함유된 Cd, Pb, Hg 및 As 등의 중 금속은 정신지체, 암, 신장 손상 및 신경 독성 등의 인 체 손상을 일으킬 수 있으며, 미세 입자에 함유된 다 환방향족탄화수소 (Polycyclic Aromatic Hydrocarbons: PAHs)는 돌연변이 유발성 및 발암성 화합물로 알려 져 있다 (Chen et al., 2015; Liu et al., 2015). 또한 미세 입자에 함유된 폴리염화 디벤조-p-다이옥신 및 디벤 조퓨란은 간 손상 및 내분비계, 면역계 및 신경계 등 에 영향을 미치며 환경 중에 높은 잔류성을 가지고 있 는 것으로 알려져 있다(Ngo *et al.*, 2018; Marinković *et al.*, 2010). 이처럼 대기 중에 존재하는 미세 입자는 미 세 입자를 구성하는 성분 및 미세 입자 표면에 흡착되 어 있는 성분들에 따라 다양한 인체 악영향을 미친다.

438

미세 입자의 인체 위해성을 입경의 크기 관점에서 살펴보면 일반적으로 대기 중 입자는 크기가 작을수 록 인체에 미치는 영향이 크다. 선행 연구에 따르면 입경 크기가 2~10 µm일 경우 입자는 경구를 통해 인 체로 유입되며, 유입된 입자의 약 10%는 폐로 유입된 다. 특히, 입경 크기가 0.3~2 μm인 입자는 거의 모든 입자가 폐포로 유입된다(Wang et al., 2021). 또한 대기 중 입경의 크기는 작을수록 단위질량당 비표면적이 크기 때문에 중금속 및 PAHs 등의 독성물질의 흡착 및 농축이 쉽다(Adamson et al., 2000). 대기 중 입경의 크기는 대기상에 존재하는 체류 시간에도 큰 영향을 미친다. 입경의 크기가 10 µm 이하는 몇 시간, 2.5 µm 이하의 입자는 몇 주 정도 대기 중에 부유할 수 있으 며, 부유 시간이 길어질수록 입자의 인체 유입, 환경에 대한 영향 및 이동 거리가 증가한다 (Sarigiannis et al., 2017; Amato et al., 2012; Kuhns et al., 2010; Slezakova et al., 2007). 이처럼 대기 중에 존재하는 입자는 이를 구성하는 성분뿐만 아니라 입경의 크기 역시 중요한 요소로 작용되며 특히 입경 크기가 작을수록 위해성 은 높아진다. 그럼에도 불구하고 현재까지의 대기 중 미세입자에 대한 연구는 주로 PM10과 PM25 위주로 이루어지고 있으며, PM_{1.0}에 대한 연구는 매우 미흡한 실정이다. 현재까지 PM10에 대한 대표적인 연구를 살 펴보면 산업단지의 석탄 연소와 바이오매스 연소로부 터 발생되는 황산염의 PM_{1.0} 생성, 대기 오염도가 높 은 도시 지역의 PM_{2.5} 중 PM_{1.0}의 비율 및 화학적 성 분, positive matrix factorization (PMF), potential source contribution function (PSCF) 모델을 사용한 주 요 도시 지역의 PM10 배출원 추적 연구 등이다(Lang et al., 2018; Zhang et al., 2018; Li et al., 2017; Xu et al., 2016). 이처럼 PM_{1.0}에 대한 선행 연구는 특정 배출원

및 고농도 대기오염이 있는 지역을 대상으로 한정적 으로 수행되고 있으며, 연구 주제 역시 배출원에 기인 한 PM_{1.0}의 식별을 위해 주로 진행되었다. 따라서 특 정 배출원에 대한 영향이 없는 PM_{1.0}의 입경 크기만 을 대상으로 인체 위해성에 대한 평가는 매우 부족하 다.

본 연구에서는 입경 크기의 관점에서 PM_{1.0}에 대한 특성과 독성과 관련된 산화잠재력 (Dithiothreitol-oxidative potential, DTT-OP)을 분석하였다. 주변의 미세 먼지 주 배출원 및 생성 전구물질의 배출원이 없는 수 도권 지역에서 PM_{2.5} 및 PM_{1.0}에 대한 시료를 동시에 포집하여 두 입경에 의한 화학적 조성 및 산화잠재력 을 동시에 분석하였다. 본 연구 결과는 특정 배출원의 영향이 없는 일반 대기에서 PM_{1.0}의 특성을 제시함으 로써 향후 극미세먼지 관리에 대한 기초 자료로 활용 될 수 있다.

2. 방 법

2.1 측정 장소 및 기간

입경 크기에 따른 화학적 특성 분석을 위해 인천 서 구 환경로 국립환경과학원 내에 위치한 대기오염측정 소(위도: 34.3412, 경도: 126.3825)에서 2021년 5월 17 일부터 6월 6일까지 약 20일간 관측하였다. 연구 지점 은 반경 1 km 이내에 주거 시설 및 공업단지 등이 없 고, 공원 등으로 둘러싸여 있으며 주변에 3개의 골프 장이 위치하고 있다. 또한 연구 지역으로부터 서북쪽 4.5 km에 학운 산업단지가 있으나, 측정소 사이에 경 인아라뱃길 등에 의해서 직접적인 영향은 없을 것으 로 판단된다. 본 연구에서는 PM_{1.0} 및 PM_{2.5} 준실시간 (3시간) 연속 분진포집기 및 PM_{1.0} 및 PM_{2.5} 베타레이 등 총 4대의 장치를 동시 운영하였다.

2.2 포집 방법

입경 크기에 따른 특성 분석을 위해 자체 제작한 중 용량 분진포집기를 이용하여 PM_{1.0} 및 PM_{2.5}를 3시간

Fig. 1. Sampling location at National Institute of Environmental Research in Incheon.

간격으로 하루 8개 시료를 자동 포집하였다. 중용량 분진포집기는 PM_{1.0}의 경우 유량 50 liter per minute (lpm), PM_{2.5}의 경우 42 lpm하에 싸이클론(URG-2000-30EH, URG-2000-30EC, URG Corp., USA)을 장착하 여 스테인레스스틸 여과지팩에 장착된 90 mm 크기 석영 여과지 (Pallflex, 2500QATUP, Pall Corp., USA)에 동시 포집하였다. 유량은 공기질량유량계 (mass flow controller)에 의해 일정하게 유지되었고, 공기 유입 구에서 포집 전후 건공기 유량측정기 (Dry Gas Test Meter, Bios Defender 510, MesaLabs, USA)에 의해 정 확, 정밀도를 재확인하였다. 본 연구는 자체 제작된 시 간조절기를 통해 전자식 자동전동밸브 개폐기를 이용 하여 매 3시간마다 연속된 시료를 포집하였다.

2.3 극미세먼지 화학성분 및 산화잠재력 분석

DTT-OP 및 PAHs 분석에 앞서 포집 석영필터를 1.5 cm² 면적으로 절단하여 PM_{1.0} 및 PM_{2.5} 내 주성분인 organic carbon (OC), elemental carbon (EC), 수용성 이온성분을 각각 분석하였다. 주성분 분석에 대한 정 확, 정밀도, 분석 최저한계 등은 선행 연구에 자세히 나타냈다 (Song *et al.*, 2020). 간략히 설명하면, OC 및 EC 분석은 National Institute of Occupational Safety & Health (NIOSH 5040) 프로토콜 (protocol)을 기초로

한 탄소분석기(Lab based OCEC Carbon Aerosol Analyzer, Sunset laboratory Inc., USA)를 이용하여 분석하 였다. 탄소분석기는 OC, EC를 최종 산화-환원된 CH4 를 내부표준가스 CH4으로 검증하고, 레이저 광투과 율에 따른 OC 및 EC의 분율을 확정한다. 또한 전체 시료의 10% 재차 분석 및 sucrose를 이용한 외부표준 물질을 이용하여 내부표준가스 CH4를 재보정하여, 5% 이내 정확 정밀도를 유지하였다. 수용성 이온성분 (NO₃⁻, SO₄²⁻, NH₄⁺)을 분석하고자 두 대의 이온크로 마토그래피를 동시 운영하였다. 절단된 석영필터는 증류수 10 mL와 함께 항온 유체 순환기(CA-111, Eyela, Japan)와 연결된 초음파기(8800, Branson, USA) 를 이용하여 2시간 동안 항온 추출하였다. 음이온 (Metrohm 930 Switzerland, Metrosp A Supp 5 150/4.0 column, 3.7 mM Na₂CO₃ & 1.0 mM NaHCO₃) 및 양이 온 이온크로마토그래피 (Metrohm 930 Swizerland, Metrosep C4-250/4.0 column, 5 mM HNO₃)를 이용하 여 정량 분석하였다. 전체 시료의 10% 재차 분석정밀 도, 매 15개 시료 분석 후 대표 표준시료를 분석하여 검량선에 대한 일관성 등을 확인하였으며 5% 이내의 정확 정밀도를 유지하였다.

입경에 따른 상대 독성의 강도를 평가하고자, DTT-OP을 분석하였다. DTT-OP 분석은 입자상 물질 이 가지는 산화잠재력 (oxidative potential)을 DTT의 감소 속도로 표현하는 방법으로 인체 위해성을 간접 적으로 분석하는 방법이다. DTT-OP 분석은 Cho et al. (2005)에 의해서 대기 중 미세먼지에 적용되기 시 작했으며 Li et al. (2009), Charrier and Anastasio (2012)의 연구 등에서 개선되어왔다. 본 연구에 사용 한 DTT-OP 분석은 Li et al. (2009)의 방법을 기반으로 적용되었다. 산화환원 방법의 일환인 DTT 법은 선행 연구에서 자세히 나타냈다 (Lee et al., 2018). 간략히, DTT-OP 분석은 분주계 (Multiflo FX, Multi-Mode Dispenser, Agilent Technologies, USA)를 이용하여 37℃ 등온 교반하에, 반응 시작 후 40분까지 총 4회 흡 광도 412 nm에서 흡광광도계 (Multiskan SkyHigh, Thermo Scientific, USA)를 이용하여 분석하였다. 최

종 DTT 소비 감소율 (DTT consumption rate (nmol/ min)은 반응시간 내 4회 분석된 흡광도의 감소 기울 기(σ ABS)에 의해 바탕 시료의 흡광도 감소 기울기를 보정한 후 포집 부피 및 PM_{1.0}, PM_{2.5}의 각각의 질량농 도로 정규화하였다. 분석의 정확, 정밀도를 확인하기 위해서 9,10-Phenanthrenequinone (9,10-PQ) 및 바탕 시료를 총시료 15% 간격으로 분석하였다 (Patel and Rastogi, 2018).

2.4 PAHs 분석

본 연구에서는 PAHs 농도 분석을 위해 3시간 간격 으로 포집된 필터 8개를 혼합하여 일별 1개의 성분 자 료를 분석하였다. 추출 전 내부표준물질(internal standard)로 Pyrene-d₁₀을 주입하였으며, 디클로로메탄을 이용하여 3회 연속 초음파 추출하여 필터링 후 1 mL 로 질소 농축하였다. 추출시료는 Gas Chromatography - Tandem Mass Spectrometry (GC-TM) (Agilent 8890 GC, 7010B GC/TQ)를 이용하여, multiple reaction monitoring (MRM) 모드하에 분석하였다. 간략히, Fragmentor Voltage (FV)에 의해 1차 질량 파편 이온 이 생성되고, 첫 번째 질량분석관에서 생성된 질량 파 편 중 MRM - Selected Ion Monitoring (MRM-SIM) 조 건에서 주 파편이온이 선택적으로 분류되어 전구이 온(Precursor Ion)이 생성된다. 생성된 전구이온은 두 개의 질량분석관 사이의 충돌유도분리(collision induced dissociation) 과정 중 충돌 에너지 (Collision Energy, CE)에 의해 재분리되어 생성이온(Product Ion)이 생성되고, 두 번째 질량분석관의 SIM 조건하 에 생성이온 중 주 파편이온이 다시 선택되어 최종 정 성, 정량 분석된다. 이와 같은 분석은 단일 질량 분석 기와 다르게 방해 질량 이온 물질을 전량 제거함으로 써 목적 성분만이 갖는 고유한 2차 생성 질량 이온에 대해서만 검출하므로 매우 높은 정확, 정밀도를 나타 낸다. 본 연구에서는 PAHs 개별 성분에 대한 MRM-SIM 조건하에 정성, 정량 분석하였다. 또한, 전체 시료 의 10% 재차 분석 및 매 분석시료 15개마다 표준물질 을 분석하여 분석의 정확, 정밀도를 유지하였다.

Table 1. Toxicological parameters for FAR compound	Table 1	 Toxicological 	parameters for	r PAH	compound
--	---------	-----------------------------------	----------------	-------	----------

	BaA	Chry	BbF	BkF	BaP	IndP	DahA
BaP _{TEF} ¹⁾	0.1	0.001	0.1	0.01	1	0.1	1
BaP _{MEF} ²⁾	0.082	0.017	0.25	0.11	1	0.31	0.29
	112						

²⁾Durant, 1996

2.5 발암성 및 돌연변이유발효능 평가

PAHs 분석 결과를 바탕으로 발암성, 돌연변이유발 효능 및 비발암 위험성을 평가하였다. 발암성 및 돌연 변이유발효능 평가는 식 (1)과 (2)를 이용하였다(Iwegbue *et al.*, 2019). 식 (1)과 (2)에 제시된 BaP_{TEQ}와 BaP_{MEQ}는 각각 발암성 및 돌연변이유발효능을 나타내 는 독성지수로 benz[a]anthracene, chrysene, benzo[b] fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene의 농도 를 이용하여 산정한다. 세부적으로 BaP_{TEQ}와 BaP_{MEQ} 는 benzo[a]pyrene의 독성을 기준으로 발암성 및 돌연 변이유발효능의 독성도를 나타내는 BaP_{TEF}와 BaP_{MEF} 를 이용하여 산정한다(표 1).

$$BaP_{TEQ} = \Sigma(C_i \times BaP_{TEF}) \tag{1}$$

$$BaP_{MEQ} = \Sigma(C_i \times BaP_{MEF}) \tag{2}$$

여기서, C_i는 개별 성분의 농도, BaP_{TEF} 및 BaP_{MEF}는 각각 발암성 및 돌연변이유발효능의 지수로 benzo[a] pyrene의 독성을 1로 기준하였을 때 각 성분의 상대 독성 계수이다.

PAHs의 비발암 위험성의 산정은 식 (3)~(6)을 이용 하여 산정하였다.

$$CDI_{ingestion} = \frac{C_{UCL} \times IngR \times EF \times ED}{BW \times AT} \times 10^{-6}$$
(3)

$$CDI_{inhalation} = \frac{C_{UCL} \times InhR \times EF \times ED}{PER \times BW \times AT}$$
(4)

$$CDI_{dermal} = \frac{C_{UCL} \times SA \times AF \times ABS \times EF \times ED}{BW \times AT} \times 10^{-6}$$
(5)

$$HI = CDI_{ingestion} + CDI_{inhalation} + CDI_{dermal}$$
(6)

Variables	Units	Infant ¹⁾	Toddler ¹⁾	Child ¹⁾	Teen ¹⁾	Adult ¹
Age	years	0~0.5	0.6~5	6~12	13~20	21~65
Exposure duration (ED)	years	0.5	4.5	7.0	8.0	34.5
Body weight (BW)	kg	8.2	16.5	32.9	59.7	65.0
Ingestion rate (IngR)	mg/day	200	200	200	100	100
Skin adherence factor	mg/cm ²	0.2	0.2	0.2	0.07	0.07
Skin surface area	m ²	203	344	586	908	1030
Inhalation rate (InhR)	m³/day	2.0	5.0	12.0	21.0	50.0

Table 2. Variables for estimation of human health risk assessment.

¹⁾Rout *et al.*, 2013

Fig. 2. Time series of concentrations of (a) PM_{2.5} and (2) PM_{1.0} with OC, EC, and ionic compounds at the sampling site.

여기서 CDI_{ingestion}는 경구, CDI_{inhalation}는 흡입, CDI_{dermal}는 경피와 관련된 비발암 위험성이며 C_{UCL}는 naphtalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene의 UCL (upper confidence leval) 95% 농도, EF는 노출빈 도로 350일/년, ED (Exposure duration)는 노출기간, BW 연령별 체중, AT는 비발암성 위험군에 대한 평 균시간으로 ED × 365일, PEF는 미립자 배출계수로 1.36 × 10⁹ m³/kg, SA (Skin surface area)는 피부 표면 적, AF (Skin adherence factor)는 피부 밀착 인자, ABS 는 피부흡입계수로 0.13으로 하였으며, IngR과 InhR 은 각각 섭취율 및 흡입률로 각 지수에 대한 연령별 지표는 표 2에 나타냈다.

3. 결 과

3.1 연구 지역의 PM_{2.5} 및 PM_{1.0}의 특성

연구 기간 중 관측된 PM_{2.5}, PM_{1.0} 농도와 PM_{2.5}, PM_{1.0}에 함유된 수용성 이온 및 OC, EC의 농도를 그 림 2에 나타내었다. 관측 기간인 5월 17일부터 6월 7 일까지 측정된 PM_{2.5} 농도는 평균 19.20 µg/m³로 나타 났다. 앞서 설명한 바와 같이, 측정소 주변은 반경 4 km 이내에 특정 배출원이 없는 지역이다. 이에 PM_{2.5}

J. Korean Soc. Atmos. Environ., Vol. 38, No. 3, June 2022, pp. 437-450

442

Fig. 3. (a) Scatter plot between PM_{2.5} and PM_{1.0} and (b) ERA5 model results from 24~25 in May.

및 PM₁₀의 비율, PM₂₅ 및 PM₁₀에 함유된 수용성 이 온과 PAHs 농도, DTT-OP의 독성계수는 특정 배출원 등의 영향이 없는 PM2.5와 PM1.0의 입경 크기 특성에 만 기인된 것으로 판단된다. PM25 내 PM10의 비율을 분석한 결과, 연구 기간 중 PM10의 농도는 평균 13.26 μg/m³으로 PM_{2.5}의 약 69%로 나타났다. PM_{2.5}와 PM10의 상관관계를 분석한 결과 5월 24일 및 5월 25 일 기간을 제외할 경우 PM25와 PM10의 상관관계 결 정계수(r²)는 0.74로 높은 상관관계를 나타냈다(그림 3). 5월 24일과 5월 25일은 PM25 농도가 평균 34.79 μg/m³, 최대 68.64 μg/m³으로 높아졌으며, PM_{1.0}의 농 도 변화는 관찰되지 않았다. 본 기간은 기상청 발표 황사기간으로, European Centre for Medium-Range Weather Forecasts (ERA5) 분석 결과 중국으로부터 기 류가 유입되었다(그림 3). 이러한 결과는 PM10와 PM2.5의 비율을 기준으로 외부 유입 등 발생 원인을 간접적으로 평가할 수 있다.

표 3은 PM_{2.5} 및 PM_{1.0}의 주성분의 농도를 나타낸 것이다. 주성분의 합(total)의 농도는 PM_{2.5} 전체 질량 농도의 57.92%, PM_{1.0}의 경우 69.76%로 상대적으로 높게 나타났다. 이는 PM_{1.0} 농도에는 반영되지 않은 황사의 영향으로 해석된다. 즉, 본 연구에서는 분석되 지 않은 황사 내 존재하는 지각성분에 의한 것으로 판 단한다. EC의 경우 PM_{2.5} 및 PM_{1.0} 모두 낮은 농도를 나타내어 분석 불확도 내에서 같은 농도로 분석되었

Table 3. Major chemical components in $PM_{2.5}$ and $PM_{1.0}$ during the sampling periods.

(µg/m³)	PM _{2.5}	PM _{1.0}	PM _{1.0} /PM _{2.5} (%)
Total ¹⁾	11.12	9.25	83
OC	2.56	2.29	89
EC	0.39	0.45	115
NO3 ⁻	3.73	3.12	84
SO4 ²⁻	2.18	1.80	83
NH_4^+	2.26	1.59	70

 $^{1)}$ total: sum of OC, EC, NO3 $^{-}$, SO4 $^{2-}$, and NH4 $^{+}$

다. 즉, PM_{2.5} 내 EC는 대부분 PM_{1.0} 내에 존재하는 것 으로 해석된다.

대기 중에 존재하는 NH₃는 알칼리성 가스로 황산 (H₂SO₄)을 중화하여 황산암모늄((NH₄)₂SO₄) 또는 암 모늄 바이 설페이트((NH₄)HSO₄)를 형성하고, 이후 대기 중의 잔존 NH₃는 질산(HNO₃)과 반응하여 질산 암모늄(NH₄NO₃)을 형성한다(Hu *et al.*, 2014; Pathak *et al.*, 2004). 분진 내 이온성분 형성에 지배적인 요인 인 NH₃ 농도는 PM_{2.5}에 함유된 NO₃⁻, SO₄²⁻, NH₄⁺의 몰비를 이용하여 확인할 수 있다. 선행 연구에 의하면 PM_{2.5} 내 NH₄⁺/SO₄²⁻의 몰비가 1.5 이상이면 ammonium-rich로 정의될 수 있다(Rozante *et al.*, 2017; Wofsy *et al.*, 1972). 본 연구의 NH₄⁺/SO₄²⁻의 몰비는 PM_{2.5} 5.52, PM_{1.0} 4.72로 ammonium-rich 상태이다(그 림 4). 또한, 본 연구에서 NO₃⁻/SO₄²⁻의 몰비는 PM_{2.5} 2.65, PM_{1.0} 2.69로 나타났다. 즉, ammonium-rich 상태

Fig. 4. Composition ratio of (a) PM_{2.5} and (b) PM_{1.0}.

Table 4. PAH concentrations (ng/m³) in PM_{2.5} and PM_{1.0}.

	PM _{1.0}	STD deviation	PM _{2.5}	STD deviation
Naphtalene (Nap)	0.1104	0.0258	0.1329	0.0226
Acenaphthylene (Acy)	0.2108	0.0494	0.2247	0.0292
Acenaphthene (Ace)	0.2327	0.0023	0.2759	0.0017
Fluorene (Flu)	0.1633	0.0044	0.1906	0.0023
Phenanthrene (Phen)	0.3441	0.0370	0.3545	0.0149
Anthracene (Ant)	0.2262	0.0238	0.2340	0.0098
Fluoranthene (Flt)	0.4998	0.1467	0.3675	0.0683
Pyrene (Pyr)	0.2088	0.0633	0.1700	0.0184
Benz[a]anthracene (BaA)	0.5338	0.1334	0.4344	0.0660
Chrysene (Chry)	0.2794	0.0410	0.2955	0.0247
Benzo[b]fluoranthene (BbF)	0.4661	0.1572	0.4894	0.1092
Benzo[k]fluoranthene (BkF)	0.2119	0.0977	0.2737	0.0998
Benzo[a]pyrene (BaP)	0.5331	0.0338	0.6273	0.0307
Indeno[1,2,3-cd]pyrene (IndP)	0.9421	0.6110	0.7858	0.4005
Dibenz[a,h]anthracene (DahA)	0.4910	0.3873	0.5187	0.2862
Benzo[ghi]perylene (BghiP)	0.2329	0.1458	0.2655	0.1859
ΣPAHs	5.6594		5.6403	

로 대기 중 NH₃가 풍부한 상태이며 NH₃와 충분하게 반응할 수 있는 황산과 질산이 존재한다. NO₃⁻ 및 SO₄²⁻를 NH₄⁺와 반응하는 당량을 기준으로 상관성을 확인할 경우 황사 이외 기간은 당량 기준 NO₃⁻ 및 SO₄²⁻와 NH₄⁺는 1:1 비의 관계로 나타난다. 즉, 연구 지역의 PM mass에 함유된 대부분의 이온상 성분은 대 기 중의 황산, 질산이 암모니아에 의해 중화되어 있다.

3.2 PM_{2.5}와 PM_{1.0}의 인체 위해성 평가

본 연구에서는 입자에 함유된 PAHs 성분 및 DTT-OP를 이용하여 입경 크기별 인체 위해성을 분

석하였다.

본 연구에서 PAHs 농도를 분석한 결과 PM_{2.5} 5.64 ng/m³, PM_{1.0} 5.65 ng/m³으로 나타났다(표 4). 선행 연 구에서 분석된 서울의 PAHs 농도는 89.3±74.3 ng/m³, 배경 지역인 고산지역의 PAHs 농도는 3.17±3.31 ng/ m³으로 연구 지역의 PAHs 농도는 국내 배경 지역보 다 높지만 도시 지역과 비교할 경우 약 6% 수준으로 분석되었다(Lee *et al.*, 2006; Park *et al.*, 2002). 이는 앞 절에서 설명한 바와 같이 연구 지점은 주변에 특정 대 기오염물질 배출원이 없는 지역이기 때문이다.

하지만, PAHs 배출원을 분석하기 위해 PAHs 진단

		c	This	study		
	Value	Sources	PM _{2.5}	PM _{1.0}	References	
CPAHs/TPAHs*	~1	Combustion	0.63	0.63	Prahl <i>et al.</i> , 1984 Takada <i>et al.</i> , 1990 Mantis <i>et al.</i> , 2005 Ravindra <i>et al.</i> , 2006a Ravindra <i>et al.</i> , 2008 Gogou <i>et al.</i> , 1996	
IndP/(IndP + BghiP)	0.18 0.37 0.56 0.62 0.35~0.7	Cars Diesel Coal Wood burning Diesel emissions	0.7858	0.9421	Grimmer <i>et al.</i> , 1983 Ravindra <i>et al.</i> , 2006a Ravindra <i>et al.</i> , 2006b Kavouras <i>et al.</i> , 2001	
Flu/(Flu + Pyr)	>0.5 <0.5	Diesel Gasoline	0.5299	0.4485	Rogge <i>et al.</i> , 1993a Rogge <i>et al.</i> , 1993b Mandalakis <i>et al.,</i> 2002 Fang <i>et al</i> . 2004 Ravindra <i>et al.</i> , 2006a Ravindra <i>et al.</i> , 2006b	
BaP/(BaP + Chry)	0.5 0.73	Diesel Gasoline	0.68	0.66	Khalili <i>et al.</i> , 1995 Guo <i>et al.</i> , 2003	
BbF/BkF	>0.5	Diesel	1.9634	2.2987	Pandey <i>et al.</i> , 1999 Park <i>et al.</i> , 2002	
IndP/(IndP + BghiP)	<0.4 ~1	Gasoline Diesel	0.7486	0.7789	Caricchia <i>et al.</i> , 1999	

Table 5. PAHs diagnostic ratios used as source indicator.

* Sum of major non-alkylated compounds (Flu + Pyr + BaA + Chry + BbF + BkF + BaP + IndP + BghiP)/total concentration of PAHs (ΣPAHs).

비를 사용할 경우 연구 지점의 PAHs는 차량 이동, 연 소, 디젤, 엔진 및 가솔린 엔진 등의 가능성이 있다(표 5).

PM_{2.5}와 PM_{1.0}에 함유된 PAHs 성분을 분석하였다. 그 결과, 표 4와 같이 Nap를 제외한 PM_{2.5}와 PM_{1.0}의 성분비는 유사한 특성을 나타냈으며, 진단비 역시 입 경 크기 차이에 상관없이 유사한 것으로 나타났다. 일 부 성분(Flt, Pyr, IndP)의 PM_{1.0} 농도가 PM_{2.5} 농도보 다 높게 분석되었으나, 표준편차 및 분석 오차 등을 고려할 때, 통계적 값의 차이는 없는 것으로 판단한다. 하지만, 위 성분에 대한 정밀한 분석 오차를 분석하여 추가 논문을 통해 통계적 유의성을 나타낼 예정이다. Nap의 경우 2고리의 저분자 PAHs로 4고리 이상의 PAHs와 다르게 기체상 분할과 관련이 큰 성분이다. 이에 Nap 등의 기체상 분할 성분을 분석하기 위해서 는 포집 필터 하부에 폴리우레탄폼 등을 이용한 트랩 장치를 사용하지만, 본 연구에서는 기체상 분할 성분 을 포집하기 위한 별도의 장치를 사용하지 않았다. 따 라서 Nap 등의 분석 결과는 측정 불확도가 매우 높게 나타났다. 즉, 측정 불확도가 높은 Nap를 제외할 경우 PM_{2.5}와 PM_{1.0}에 함유된 항목별 PAHs 농도는 유사하 다는 것을 보여준다.

PM_{2.5}와 PM_{1.0}에 함유된 PAHs 독성을 평가하기 위 해 BaP_{TEQ}, BaP_{MEQ} 및 비발암성 물질 위해성을 분석 하였다. BaP_{TEQ}, BaP_{MEQ}는 각각 발암성 및 돌연변이 유발효능을 나타내는 인자로 BaP의 독성을 기준으로 각 성분의 등가 독성지수를 농도에 반영하여 BaP_{TEF}, BaP_{MEF}를 산정하였다. 또한 산정된 BaP_{TEF}, BaP_{MEF}의

합을 BaP_{TEO}, BaP_{MEO}로 명명하여 PAHs에 대한 발암 성 및 돌연변이유발효능의 독성을 표현하였다. BaP_{TEO}, BaP_{MEO}의 산정은 분석된 16종의 PAHs 중 BaA, Chry, BbF, BkF, BaP, IndP, DahA 등의 4고리 이상 의 발암성 물질을 이용하였다. 반면에 BaP_{TEO}, BaP_{MEO}의 산정에 사용되지 않는 성분의 독성을 표현 하기 어렵다. 이에 본 연구에서는 Nap, Acy, Ace, Flu, Phen, Ant, Flt 및 Pyr의 독성을 확인하고자 비발암성 물질 위해성을 추가적으로 평가하였다. 비발암성 물 질 위해성은 경구, 경피, 흡입에 대한 3가지 노출 경로 에 대해 만성 일일 노출량에 기반하여 산정하였다. 구 체적으로 3가지 노출 경로를 대상으로 신생아, 유아 기, 소년기, 청소년기 및 성년의 연령을 바탕으로 각 흡입, 경구, 경피 지수, 노출 기간 등을 고려하여 산정 된 계수를 합산하여 HI 지수로 표현하였다. 이때 산정 된 HI 지수는 1보다 클 경우 비발암성 물질 위해성이 높아 관리가 필요한 것으로 알려져 있다(Iwegbue et al., 2019). 본 연구 지점 PM2.5, PM1.0의 농도 및 PM2.5, PM10에 함유된 PAHs 농도는 대한민국 배경 농도와 유사하거나 낮은 수준이다. 따라서 PAHs를 바탕으로 산정된 BaP_{TEO}, BaP_{MEO} 및 비발암성 물질 위해성은

	d PM1	PM_{25} and	s in PM	of PAHs	and BaP _M	5. ВаР _{тео}	able	T
--	-------	---------------	---------	---------	----------------------	------------------------------	------	---

기존 PAHs 독성을 평가한 선행 연구에 비해 매우 낮 은 수준이다. 하지만 본 연구의 목적은 PM_{2.5}와 PM_{1.0} 입경 크기에 대한 상대적 독성의 비교이기 때문에 연 구 결과를 바탕으로 입경 크기에 따른 독성 강도를 분 석하였다.

표 6에 연구 지점의 BaPTEO, BaPMEO의 산정 결과를 제시하였다. 표에서와 같이 ng/mg 단위의 BaP_{TEO}는 PM25 83.81, PM10 103.62로 단위 질량당 함유된 BaP_{TEO}는 PM_{1.0}이 PM_{2.5}보다 약 20% 높게 나타났다. BaP_{MEO} 역시 단위 질량당을 기준으로 확인할 경우 PM_{1.0}이 PM_{2.5}보다 약 20% 높게 나타나 PM_{2.5} 76.12, PM10 98.34로 나타났다. 즉, 입경 크기를 기준으로 평 가할 경우 PM1.0 PM2.5보다 약 20% 이상 발암성 및 돌연변이유발효능이 높게 확인되었다. 또한 표 5에 제시된 바와 같이 시료 채취 유량을 기준 (ng/m³)으 로 평가할 경우 PM2.5와 PM1.0의 BaPTEO 및 BaPMEO의 차이는 약 6% 정도로 나타났다. 앞에서 설명한 바와 같이 PM_{1.0}의 질량은 PM_{2.5}의 약 70% 수준이며, PM_{2.5} 는 PM1.0을 포함하여 포집된다. 즉, PM1.0과 PM2.5의 단위 질량당 BaP_{TEO} 및 BaP_{MEO}의 차이, 포집된 PM_{1.0} 과 PM2.5 질량 차이가 있음에도 유사한 BaPTEO 및

								(Unit: ng/mg)
BaP _{TEF}	BaA	Chry	BbF	BkF	BaP	IndP	DahA	BaP _{TEQ}
PM _{1.0}	4.4062	0.0238	3.9467	0.1787	46.2724	7.8555	40.9353	103.6186
PM _{2.5}	2.6555	0.0181	3.0106	0.1759	39.1860	4.8932	33.8674	83.8067
BaP _{MEF}	BaA	Chry	BbF	BkF	BaP	IndP	DahA	BaP _{MEQ}
PM _{1.0}	3.6131	0.4047	9.8667	1.9660	46.2724	24.3521	11.8712	98.3462
PM _{2.5}	2.1775	0.3081	7.5264	1.9354	39.1860	15.1688	9.8215	76.1237
								(Unit: ng/m ³)
BaP _{TEF}	BaA	Chry	BbF	BkF	BaP	IndP	DahA	BaP _{TEQ}
PM _{1.0}	0.0507	0.0003	0.0466	0.0021	0.5331	0.0942	0.4910	1.2180
PM _{2.5}	0.0434	0.0003	0.0489	0.0027	0.6273	0.0786	0.5187	1.3200
BaP _{MEF}	BaA	Chry	BbF	BkF	BaP	IndP	DahA	BaP _{MEQ}
PM _{1.0}	0.0416	0.0047	0.1165	0.0233	0.5331	0.2920	0.1424	1.1537
PM _{2.5}	0.0356	0.0050	0.1223	0.0301	0.6273	0.2436	0.1504	1.2144

PM _{1.0}	Infant	Toddler	Child	Teen	Adult
CDI	3.30×10 ⁻⁶	1.64 × 10 ⁻⁶	8.23×10 ⁻⁷	2.27 × 10 ⁻⁷	2.08 × 10 ⁻⁷
CDI _{inh}	2.43×10^{-11}	3.02×10^{-11}	3.63 × 10 ⁻¹¹	3.50×10^{-11}	7.66 × 10 ⁻¹¹
CDI _{der}	8.71 × 10 ⁻⁸	7.34 × 10 ⁻⁸	6.27 × 10 ⁻⁸	1.87×10^{-8}	1.95×10 ⁻⁸
HI	3.39×10^{-6}	1.71 × 10 ⁻⁶	8.86 × 10 ⁻⁷	2.45×10^{-7}	2.28×10^{-7}
PM _{2.5}	Infant	Toddler	Child	Teen	Adult
CDI	2.33×10 ⁻⁶	1.16×10 ⁻⁶	5.81 × 10 ⁻⁷	1.60×10 ⁻⁷	1.47 × 10 ⁻⁷
CDI _{inh}	1.71×10^{-11}	2.13×10^{-11}	2.56×10^{-11}	2.47×10^{-11}	5.41×10^{-11}
CDI _{der}	6.15 × 10 ⁻⁸	5.18 × 10 ⁻⁸	4.43×10^{-8}	1.32 × 10 ⁻⁸	1.38×10 ⁻⁸
HI	2.39×10^{-6}	1.21×10^{-6}	6.26×10^{-7}	1.73×10^{-7}	1.61×10^{-7}

Table 7. Non-cancer risk of PAHs in PM_{2.5} and PM_{1.0}.

446

 BaP_{MEQ}를 바탕으로 판단할 경우 BaP_{TEQ} 및 BaP_{MEQ}

 산정에 영향을 주는 성분은 대부분 PM_{1.0}에 함유되어

 있다.

비발암성 물질 위해성을 산정하여 표 7에 나타냈 다. 경구, 경피, 흡입의 3가지 경로 중 비발암성 물질 위해성에 영향을 가장 크게 미치는 요소는 경구로 확 인되었다. 또한 연령이 낮을수록 비발암성 물질 위해 성은 높게 나타나 신생아의 경우 성인에 비해 약 15배 이상 비발암성 물질 위해성이 높은 것으로 확인되었 다. PM_{2.5}와 PM_{1.0}의 HI 지수를 비교할 경우 PM_{1.0}이 PM_{2.5}보다 약 42% 비발암성 물질 위해성은 높게 나타 났다.

PM_{2.5}와 PM_{1.0}의 입경 크기에 따른 인체 위해성을 분석하기 위하여 DTT-OP를 분석하였다. DTT-OP는 인체가 PM에 의해 손상되는 메커니즘을 알고리즘으 로 하여 PM의 독성을 평가하는 방법으로 PM의 구성 성분의 독성을 기준으로 PM의 독성을 평가하는 방법 과는 차이가 있다. 따라서 PM의 크기, 구성성분의 농 도와 종류 등을 포괄적으로 평가할 수 있는 방법으로 특정 독성 요인에 대한 누락 및 과대 평가를 배제할 수 있다. 세부적으로 DTT-OP는 PM에 의해 유도되는 염증의 발생과 관련된 활성산소종 reactive oxygen species, ROS)을 분석하는 방법이다 (Esposito *et al.*, 2014; Auerbach and Hernandez, 2012). 그림 5는 연구 기간 중 PM_{2.5}와 PM_{1.0}의 DTT-OP 분석 결과를 보여 준다. 그림에서와 같이 DTT-OP를 이용한 정규화 산

Fig. 5. Time series concentrations of (a) DTT-OP normalized to $PM_{2.5}$ and $PM_{1.0}$ mass and (b) OC normalized to $PM_{1.0}$ mass.

화독성은 일별 변화에 차이가 있지만 PM_{1.0}이 PM_{2.5} 와 비교하여 약 35% 이상 높게 나타났다.

DTT-OP의 정규화 산화독성에 영향을 미치는 PM 의 구성 성분을 확인한 결과 그림 5에서와 같이 DTT-OP의 정규화 산화독성의 변이는 분석 성분 중 OC의 변이와 양의 상관성(r²=0.47)을 나타냈다. 즉, DTT-OP에 영향을 미치는 주요 인자는 OC 성분에 기 반을 두고 있다. 또한 PM_{2.5}와 PM_{1.0}의 DTT-OP의 질 량 정규화 산화독성의 일변화를 살펴보았다. 그 결과 5월 24일, 25일 및 5월 29일을 제외할 경우 PM, 5와 PM10의 정규화 산화독성의 비율은 비교적 일정하게 나타났다. 반면 5월 24일과 25일 및 29일은 PM25와 비교하여 PM10의 정규화 산화독성이 최대 3.5배 이상 증가한 기간이다. 5월 24일과 25일은 앞 절에서 설명 한 바와 같이 황사 유입기간으로 PM25 농도의 증가가 확인된 기간이며, 반면 PM10 농도의 증가는 확인되지 않은 기간이다. 세부적으로 황사 기간은 PM25의 농도 가 PM10에 비해 약 2.5배 이상 높아진 기간이다. 반면 5월 24일과 25일의 PM1.0과 PM2.5의 정규화 산화독성 농도는 그림 5에서와 같이 이전 기간과 비교하여 약 최대 2.5배 이상 증가한다. 즉, 5월 24일과 25일에 증 가한 PM10/PM25의 정규화 산화독성은 PM25의 질량 증가로 인한 결과로 해석되며, 황사에 의해 증가한 PM 성분은 DTT-OP의 정규화 산화독성에 영향을 미 치지 않았다. 반면 5월 29일은 이전과 이후 기간을 비 교할 경우 PM2.5 및 PM1.0의 농도 변화가 관찰되지 않 았으며, OC의 급격한 변화도 관찰되지 않았다. 현재 까지의 분석 결과만을 바탕으로 5월 29일의 DTT-OP 의 정규 산화독성이 증가한 이유를 설명하기는 어렵 다. 하지만 DTT-OP의 정규 산화독성은 OC에 큰 영 향을 받고 있기 때문에 OC에 함유된 유기 성분이 DTT-OP의 정규 산화독성 증가에 영향을 미친 것으 로 판단된다. 또한 유기 성분 중 하나인 PAHs 중 BkF 와 DahA는 연구 기간과 비교했을 때 5월 29일에 각각 2.2배, 4.0배 증가했다. OC 성분 중 BkF, DahA 등과 같 이 특정 유기 성분의 증가로부터 DTT-OP의 정규 산 화독성이 증가했을 것으로 판단된다.

4. 결 론

본 연구는 PM_{2.5}와 PM_{1.0}의 입경 크기 차이에 따른 물리화학적 및 독성학적 차이를 분석하였다. 측정소 는 국립환경과학원 내에 위치한 대기오염측정소에서 약 20일간 측정하였다. 연구 결과, PM_{2.5} 및 PM_{1.0}은 외부 유입이 없을 경우 높은 상관관계를 나타냈다. 두 입경 내 OC 및 이온성분 등의 주성분 비율은 큰 차이 를 나타내지 않았으며, PAHs 성분도 입경 내 분율 차 이는 나타나지 않았다. 하지만, PM_{1.0}의 독성의 강도 가 PM_{2.5}보다 높게 나타났다. 특히, BaP_{TEQ}, BaP_{MEQ}, 비발암성 물질 위해성 및 DTT-OP를 이용한 정규 산 화독성은 단위 질량당 PM_{1.0}이 PM_{2.5}에 비해 20% 이 상 높게 분석되었다. 또한 PAHs의 주요 독성 물질은 PM_{1.0}에 대부분 함유되어 있는 것으로 분석되었다. DTT-OP의 산화독성은 OC와 양의 상관성을 나타냈 고, OC 내 포함된 유기 성분에 의해 DTT-OP가 증가 한 것으로 나타났다. 추가 연구를 통해 PM_{1.0} 내의 독 성 관련 성분 및 더 나아가 배출원을 분석할 예정이 다. 본 연구 결과는, 인체 위해성 관련한 극미세먼지 저감 대책 등에 적극적으로 적용될 수 있다.

447

감사의 글

본 연구는 한국연구재단 (NRF-2020M3G1A1115 000) 및 국립환경과학원(NIER-SP2021-324)의 지원으 로 수행되었습니다. 본 연구에 참여하신 모든 연구원 님께 깊은 감사드립니다.

References

- Abrams, J.Y., Weber, R.J., Klein, M., Samat, S.E., Chang, H.H., Strickland, M.J., Mulholland, J.A. (2017) Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits, Environmental Health Perspectives, 125(10), 107008.
- Adamson, I., Prieditis, H., Hedgecock, C., Vincent, R. (2000) Zinc is the toxic factor in the lung response to an atmospheric particulate sample, Toxicology and Applied Pharmacology, 166(2), 111-119.
- Amato, F., Karanasiou, A., Moreno, T., Alastuey, A., Orza, J., Lumbreras, J., Querol, X. (2012) Emission factors from road dust resuspension in a Mediterranean freeway, Atmospheric Environment, 61, 580-587.

Auerbach, A., Hernandez, M.L. (2012) The effect of environmental oxidative stress on airway inflammation, Current Opinion in Allergy and Clinical Immunology, 12(2), 133-139. https://doi.org/10.1097/ACI.0b013e32835 113d6

448

- Bates, J.T., Fang, T., Verma, V., Zeng, L., Weber, R.J., Tolbert, P.E., Mulholland, J.A. (2019) Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects, Environmental Science & Technology, 53(8), 4003-4019.
- Caricchia, A.M., Chiavarini, S., Pezza, M. (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy), Atmospheric Environment, 33(23), 3731-3738.
- Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z.J., Badaloni, C., Beelen, R., Eriksen, K.T. (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. Bmj, 348.
- Charrier, J.G., Anastasio, C. (2012) On dithiothreitol (DTT) as a measure of oxidative potential forambient particles: evidence for the importance of soluble transition metals, Atmospheric Chemistry and Physics, 12(5), 11317-11350. https://doi.org/10.5194/acpd-12-113 17-2012
- Chen, C., Zhang, H., Li, H., Wu, N., Zhang, Q. (2020) Chemical characteristics and source apportionment of ambient PM_{1.0} and PM_{2.5} in a polluted city in North China plain, Atmospheric Environment, 242, 117867. https://doi. org/10.1016/j.atmosenv.2020.117867
- Chen, P., Bi, X., Zhang, J., Wu, J., Feng, Y. (2015) Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM_{2.5} in Tianjin, China, Particuology, 20, 104-109.
- Cho, A.K., Sioutas, C., Miguel, A.H., Kumagai, Y., Schmitz, D.A., Singh, M., Froines, J.R. (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin, Environmental Research, 99(1), 40-47. https://doi.org/10.1016/j.envres.2005.01.003
- Durant, J.L., Busby Jr, W.F., Lafleur, A.L., Penman, B.W., Crespi, C.L. (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols, Mutation Research/Genetic Toxicology, 371(3-4), 123-157. https://doi.org/10.1016/S0165-1218(96)90103-2
- Esposito, S., Tenconi, R., Lelii, M., Preti, V., Nazzari, E., Consolo, S., Patria, M.F. (2014) Possible molecular mechanisms

linking air pollution and asthma in children, BMC Pulmonary Medicine, 14(1), 31. https://doi.org/10.1186/ 1471-2466-14-31

- Fang, G.-C., Wu, Y.-S., Chen, M.-H., Ho, T.-T., Huang, S.-H., Rau, J.-Y. (2004) Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002-2003, Atmospheric Environment, 38(21), 3385-3391.
- Gogou, A., Stratigakis, N., Kanakidou, M., Stephanou, E.G. (1996) Organic aerosols in Eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories, Organic Geochemistry, 25(1-2), 79-96.
- Grimmer, G., Jacob, J., Naujack, K.-W. (1983) Profile of the polycyclic aromatic compounds from crude oils, Fresenius' Zeitschrift Fuer Analytische Chemie, 314(1), 29-36.
- Guo, H., Lee, S., Ho, K., Wang, X., Zou, S. (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong, Atmospheric Environment, 37(38), 5307-5317.
- Hu, Q., Zhang, L., Evans, G.J., Yao, X. (2014) Variability of atmospheric ammonia related to potential emission sources in downtown Toronto, Canada, Atmospheric Environment, 99, 365-373. https://doi.org/10.1016/j. atmosenv.2014.10.006
- Iwegbue, C.M.A., Iteku-Atata, E.-O.C., Odali, E.W., Egobueze, F.E., Tesi, G.O., Nwajei, G.E., Martincigh, B.S. (2019) Distribution, Sources and Health Risks of Polycyclic Aromatic Hydrocarbons (PAHs) in Household Dusts from Rural, Semi-urban and Urban Areas in the Niger Delta, Nigeria, Exposure and Health, 11(3), 209-225. https://doi.org/10.1007/s12403-018-0276-z
- Kavouras, I.G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E.G., Von Baer, D., Oyola, P. (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods, Environmental Science & Technology, 35(11), 2288-2294.
- Khalili, N.R., Scheff, P.A., Holsen, T.M. (1995) PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions, Atmospheric Environment, 29(4), 533-542.
- Kuhns, H., Gillies, J., Etyemezian, V., Nikolich, G., King, J., Zhu, D., Kohl, S. (2010) Effect of soil type and momentum on unpaved road particulate matter emissions from wheeled and tracked vehicles, Aerosol Science and Technology, 44(3), 187-196.
- Lang, J., Li, S., Cheng, S., Zhou, Y., Chen, D., Zhang, Y., Wang, H. (2018) Chemical Characteristics and Sources of Submicron Particles in a City with Heavy Pollution in Chi-

na, Atmosphere, 9(10), 388. Retrieved from https:// www.mdpi.com/2073-4433/9/10/388

- Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., He, K. (2017) Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmospheric Chemistry and Physics, 17(7), 4751-4768. https://doi.org/10.5194/acp-17-4751-2017
- Lee, J.Y., Kim, Y.P., Kang, C.-H., Ghim, Y.S. (2006) Seasonal trend of particulate PAHs at Gosan, a background site in Korea between 2001 and 2002 and major factors affecting their levels, Atmospheric Research, 82(3), 680-687. https://doi.org/10.1016/j.atmosres.2006.02.022
- Lee, Y., Kim, E., Ryu, C., Oh, S.-H., Joo, H., Bae, M.-S. (2018) Relationship between cholesterol and oxidative potential from meat cooking, Journal of Korean Society for Atmospheric Environment, 34(5), 639-650, (in Korean with English abstract). https://doi.org/10.5572/KOSAE. 2018.34.5.639
- Li, Q., Wyatt, A., Kamens, R.M. (2009) Oxidant generation and toxicity enhancement of aged-diesel exhaust, Atmospheric Environment, 43(5), 1037-1042. https://doi. org/10.1016/j.atmosenv.2008.11.018
- Liu, X., Zhai, Y., Zhu, Y., Liu, Y., Chen, H., Li, P., Zeng, G. (2015) Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha, Science of The Total Environment, 517, 215-221.
- Mandalakis, M., Tsapakis, M., Tsoga, A., Stephanou, E.G. (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece), Atmospheric Environment, 36(25), 4023-4035.
- Mantis, J., Chaloulakou, A., Samara, C. (2005) PM₁₀-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece, Chemosphere, 59(5), 593-604.
- Marinković, N., Pašalić, D., Ferenčak, G., Gršković, B., Stavljenić Rukavina, A. (2010) Dioxins and human toxicity, Arhiv za higijenu rada i toksikologiju, 61(4), 445-452.
- Nemery, B., Hoet, P.H.M., Nemmar, A. (2001) The Meuse Valley fog of 1930: an air pollution disaster, The Lancet, 357(9257), 704-708. https://doi.org/10.1016/S0140-6736(00)04135-0
- Ngo, T.H., Tsou, H.H., Chen, Y.F., Chen, Y.W., Chi, K.H. (2018) Sources identification of PCDD/Fs in soil and atmospheric deposition in Taiwan, Chemosphere, 208, 374-381.
- Pandey, P.K., Patel, K.S., Lenicek, J. (1999) Polycyclic aromatic

hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India, Environmental Monitoring and Assessment, 59(3), 287-319.

- Park, S.S., Kim, Y.J., Kang, C.H. (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea, Atmospheric Environment, 36(17), 2917-2924.
- Patel, A., Rastogi, N. (2018) Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic Plain, Atmospheric Environment, 175, 127-134. https://doi.org/10.1016/j.atmosenv.2017.12.004
- Pathak, R.K., Yao, X., Chan, C.K. (2004) Sampling artifacts of acidity and ionic species in PM_{2.5}, Environmental Science & Technology, 38(1), 254-259. https://doi.org/10. 1021/es0342244
- Prahl, F.G., Crecelius, E., Carpenter, R. (1984) Polycyclic aromatic hydrocarbons in Washington coastal sediments: an evaluation of atmospheric and riverine routes of introduction, Environmental Science & Technology, 18(9), 687-693.
- Ravindra, K., Bencs, L., Wauters, E., De Hoog, J., Deutsch, F., Roekens, E., Van Grieken, R. (2006a) Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities, Atmospheric Environment, 40(4), 771-785.
- Ravindra, K., Wauters, E., Van Grieken, R. (2008) Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses, Science of The Total Environment, 396(2-3), 100-110.
- Ravindra, K., Wauters, E., Tyagi, S.K., Mor, S., Van Grieken, R. (2006b) Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India, Environmental Monitoring and Assessment, 115(1), 405-417.
- Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R. (1993a) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks, Environmental Science & Technology, 27(4), 636-651.
- Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R. (1993b) Sources of fine organic aerosol. 5. Natural gas home appliances, Environmental Science & Technology, 27(13), 2736-2744.
- Rout, T.K., Masto, R., Ram, L., George, J., Padhy, P.K. (2013) Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area, Environmental Geochemistry and Health, 35(3), 347-356. https://doi.org/10.1007/s10653-012-9499-2

Rozante, J.R., Rozante, V., Souza Alvim, D., Ocimar Manzi, A., Barboza Chiquetto, J., Siqueira D'Amelio, M.T., Moreira, D.S. (2017) Variations of Carbon Monoxide Concentrations in the Megacity of São Paulo from 2000 to 2015 in Different Time Scales, Atmosphere, 8(5), 81. https://doi.org/10.3390/atmos8050081

450

- Sarigiannis, D., Handakas, E.J., Kermenidou, M., Zarkadas, I., Gotti, A., Charisiadis, P., Karakitsios, S.P. (2017) Monitoring of air pollution levels related to Charilaos Trikoupis Bridge, Science of The Total Environment, 609, 1451-1463.
- Shou, Y., Huang, Y., Zhu, X., Liu, C., Hu, Y., Wang, H. (2019) A review of the possible associations between ambient PM_{2.5} exposures and the development of Alzheimer's disease, Ecotoxicology and Environmental Safety, 174, 344-352. https://doi.org/10.1016/j.ecoenv.2019. 02.086
- Slezakova, K., Pereira, M., Reis, M., Alvim-Ferraz, M. (2007) Influence of traffic emissions on the composition of atmospheric particles of different sizes - Part 1: concentrations and elemental characterization, Journal of Atmospheric Chemistry, 58(1), 55-68.
- Song, M., Kim, M., Kim, M., Lee, K.-H., Bae, M.-S. (2020) Relationship between Long-range Transport of Ammonia and Ammonium in Wintertime in Suburban Area, Journal of Korean Society for Atmospheric Environment, 36(4), 543-557. https://doi.org/10.5572/KOSAE.2020. 36.4.543
- Takada, H., Onda, T., Ogura, N. (1990) Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography, Environmental Science & Technology, 24(8), 1179-1186.
- Tie, X., Wu, D., Brasseur, G. (2009) Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China, Atmospheric Environment, 43(14), 2375-2377.
- United States Environmental Protection Agency (US EPA) (2012) Mid Atlantic risk assessment, Regional Screening Level (RSL). https://www.epa.gov/region9/surper fund/prg/

Wang, G., Xu, Y., Huang, L., Wang, K., Shen, H., Li, Z. (2021) Pollu-

tion characteristics and toxic effects of PM_{1.0} and PM_{2.5} in Harbin, China, Environmental Science and Pollution Research, 28(11), 13229-13242. https://doi. org/10.1007/s11356-020-11510-8

- Wofsy, S.C., McConnell, J.C., McElroy, M.B. (1972) Atmospheric CH₄, CO, and CO₂, Journal of Geophysical Research (1896-1977), 77(24), 4477-4493. https://doi.org/10. 1029/JC077i024p04477
- Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A.S.H., Qin, D. (2016) Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, Atmospheric Chemistry and Physics, 16(23), 14937-14957. https://doi. org/10.5194/acp-16-14937-2016
- Zhao, Y., Yu, R., Hu, G., Lin, X., Liu, X. (2017) Chemical characteristics and Pb isotopic compositions of PM_{2.5} in Nanchang, China, Particuology, 32, 95-102.
- Zhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., Wang, H. (2018) Chemical composition and sources of PM₁ and PM_{2.5} in Beijing in autumn, Science of The Total Environment, 630, 72-82. https://doi.org/10.1016/j.scitot env.2018.02.151

Authors Information

- 송명기(국립목포대학교 환경공학과 연구교수) (msong@mnu.ac.kr)
- 박진수(국립환경과학원 연구관)(airchemi@korea.kr)
- 김민성 (국립목포대학교 환경공학과 석사연구원) (s153702@365.mokpo.ac.kr)
- 최진수(국립환경과학원 연구사)(reconjs@korea.kr)
- 오세호(국립목포대학교 환경공학과 박사연구원) (d17418202@365.mokpo.ac.kr)
- 최서영(국립목포대학교 환경공학과 석사연구원) (\$184221@365.mokpo.ac.kr)
- 유근혜(국립목포대학교 환경공학과 연구교수) (fanygh89@mnu.ac.kr)
- 이태형(한국외국어대학교 환경학과 교수)(thlee@hufs.ac.kr)
- 배민석(국립목포대학교 환경공학과 교수)(minsbae@mnu.ac.kr)